BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 14759823)

  • 21. Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.
    Ewers BE; Mackay DS; Samanta S
    Tree Physiol; 2007 Jan; 27(1):11-24. PubMed ID: 17169902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drought causes reduced growth of trembling aspen in western Canada.
    Chen L; Huang JG; Alam SA; Zhai L; Dawson A; Stadt KJ; Comeau PG
    Glob Chang Biol; 2017 Jul; 23(7):2887-2902. PubMed ID: 28121057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.
    Rasheed F; Dreyer E; Richard B; Brignolas F; Brendel O; Le Thiec D
    Plant Cell Environ; 2015 Apr; 38(4):670-84. PubMed ID: 25099629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone.
    Uddling J; Teclaw RM; Kubiske ME; Pregitzer KS; Ellsworth DS
    Tree Physiol; 2008 Aug; 28(8):1231-43. PubMed ID: 18519254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transpiration and water relations of poplar trees growing close to the water table.
    Zhang H; Morison JI; Simmonds LP
    Tree Physiol; 1999 Jul; 19(9):563-573. PubMed ID: 12651530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facilitation of Balsam Fir by Trembling Aspen in the Boreal Forest: Do Ectomycorrhizal Communities Matter?
    Nagati M; Roy M; Desrochers A; Manzi S; Bergeron Y; Gardes M
    Front Plant Sci; 2019; 10():932. PubMed ID: 31379909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest.
    Daley MJ; Phillips NG
    Tree Physiol; 2006 Apr; 26(4):411-9. PubMed ID: 16414920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Response of Water Dynamics to Long-Term High Vapor Pressure Deficit Is Mediated by Anatomical Adaptations in Plants.
    Du Q; Jiao X; Song X; Zhang J; Bai P; Ding J; Li J
    Front Plant Sci; 2020; 11():758. PubMed ID: 32582267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia.
    Arneth A; Kelliher FM; Bauer G; Hollinger DY; Byers JN; Hunt JE; McSeveny TM; Ziegler W; Vygodskaya NN; Milukova I; Sogachov A; Varlagin A; Schulze ED
    Tree Physiol; 1996; 16(1_2):247-255. PubMed ID: 14871769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence.
    Das Gupta S; Mackenzie MD
    PLoS One; 2016; 11(11):e0165602. PubMed ID: 27832089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Further insights into the components of resistance to Ophiostoma novo-ulmi in Ulmus minor: hydraulic conductance, stomatal sensitivity and bark dehydration.
    Pita P; Rodríguez-Calcerrada J; Medel D; Gil L
    Tree Physiol; 2018 Feb; 38(2):252-262. PubMed ID: 29040781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evolution of mechanisms driving the stomatal response to vapor pressure deficit.
    McAdam SA; Brodribb TJ
    Plant Physiol; 2015 Mar; 167(3):833-43. PubMed ID: 25637454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves.
    Zait Y; Shapira O; Schwartz A
    Plant Cell Environ; 2017 Jul; 40(7):1143-1152. PubMed ID: 28098339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors affecting fall down rates of dead aspen (Populus tremuloides) biomass following severe drought in west-central Canada.
    Ted Hogg EH; Michaelian M
    Glob Chang Biol; 2015 May; 21(5):1968-79. PubMed ID: 25393098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.
    Paudel I; Naor A; Gal Y; Cohen S
    Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest.
    Oren R; Phillips N; Ewers BE; Pataki DE; Megonigal JP
    Tree Physiol; 1999 May; 19(6):337-347. PubMed ID: 12651555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Species-Specific Shifts in Diurnal Sap Velocity Dynamics and Hysteretic Behavior of Ecophysiological Variables During the 2015-2016 El Niño Event in the Amazon Forest.
    Gimenez BO; Jardine KJ; Higuchi N; Negrón-Juárez RI; Sampaio-Filho IJ; Cobello LO; Fontes CG; Dawson TE; Varadharajan C; Christianson DS; Spanner GC; Araújo AC; Warren JM; Newman BD; Holm JA; Koven CD; McDowell NG; Chambers JQ
    Front Plant Sci; 2019; 10():830. PubMed ID: 31316536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.