These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 14759826)

  • 1. Automated measurements of CO(2) exchange at the moss surface of a black spruce forest.
    Goulden ML; Crill PM
    Tree Physiol; 1997; 17(8_9):537-542. PubMed ID: 14759826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine Root Growth of Black Spruce Trees and Understory Plants in a Permafrost Forest Along a North-Facing Slope in Interior Alaska.
    Noguchi K; Matsuura Y; Morishita T; Toriyama J; Kim Y
    Front Plant Sci; 2021; 12():769710. PubMed ID: 34868167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.
    Dunn AL; Wofsy SC; v H Bright A
    Ecol Appl; 2009 Mar; 19(2):495-504. PubMed ID: 19323205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference.
    Dang QL; Margolis HA; Coyea MR; Sy M; Collatz GJ
    Tree Physiol; 1997; 17(8_9):521-535. PubMed ID: 14759825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?
    Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F
    Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of changes in water content on photosynthesis, transpiration and discrimination against
    Williams TG; Flanagan LB
    Oecologia; 1996 Oct; 108(1):38-46. PubMed ID: 28307731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental controls on the photosynthesis and respiration of a boreal lichen woodland: a growing season of whole-ecosystem exchange measurements by eddy correlation.
    Fan SM; Goulden ML; Munger JW; Daube BC; Bakwin PS; Wofsy SC; Amthor JS; Fitzjarrald DR; Moore KE; Moore TR
    Oecologia; 1995 Jun; 102(4):443-452. PubMed ID: 28306887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Component carbon fluxes and their contribution to ecosystem carbon exchange in a pine forest: an assessment based on eddy covariance measurements and an integrated model.
    Wang KY; Kellomäki S; Zha TS; Peltola H
    Tree Physiol; 2004 Jan; 24(1):19-34. PubMed ID: 14652211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests.
    Kangas L; Maanavilja L; Hájek T; Juurola E; Chimner RA; Mehtätalo L; Tuittila ES
    Ecol Evol; 2014 Feb; 4(4):381-96. PubMed ID: 24634723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce.
    Bronson DR; Gower ST
    Tree Physiol; 2010 Apr; 30(4):441-9. PubMed ID: 20144925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region.
    Kimball JS; Thornton PE; White MA; Running SW
    Tree Physiol; 1997; 17(8_9):589-599. PubMed ID: 14759832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status.
    Ryan MG; Hubbard RM; Pongracic S; Raison RJ; McMurtrie RE
    Tree Physiol; 1996 Mar; 16(3):333-43. PubMed ID: 14871734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of mosses in the phosphorus cycling of an Alaskan black spruce forest.
    Chapin FS; Oechel WC; Van Cleve K; Lawrence W
    Oecologia; 1987 Dec; 74(2):310-315. PubMed ID: 28312006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest.
    Bisbee KE; Gower ST; Norman JM; Nordheim EV
    Oecologia; 2001 Oct; 129(2):261-270. PubMed ID: 28547605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spread of Kalmia angustifolia on black spruce forest cutovers contributes to the spatial heterogeneity of soil resources.
    Joanisse GD; Bradley RL; Preston CM
    PLoS One; 2018; 13(6):e0198860. PubMed ID: 29927964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthesis and respiration of black spruce at three organizational scales: shoot, branch and canopy.
    Rayment MB; Loustau D; Jarvis PJ
    Tree Physiol; 2002 Mar; 22(4):219-29. PubMed ID: 11874718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand.
    Gaumont-Guay D; Black TA; Barr AG; Jassal RS; Nesic Z
    Tree Physiol; 2008 Feb; 28(2):161-71. PubMed ID: 18055427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Land-use changes alter CO2 flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands.
    San José J; Montes R; Grace J; Nikonova N
    Tree Physiol; 2008 Mar; 28(3):437-50. PubMed ID: 18171667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability in leaf-level CO(2) and water fluxes in Pinus banksiana and Picea mariana in Saskatchewan.
    Sullivan JH; Bovard BD; Middleton EM
    Tree Physiol; 1997; 17(8_9):553-561. PubMed ID: 14759828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.