These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 14759846)

  • 21. Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest.
    Misson L; Gershenson A; Tang J; McKay M; Cheng W; Goldstein A
    Tree Physiol; 2006 Jul; 26(7):833-44. PubMed ID: 16585030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of photochemical smog and mineral nutrition on ponderosa pine seedlings.
    Bytnerowicz A; Poth M; Takemoto BK
    Environ Pollut; 1990; 67(3):233-48. PubMed ID: 15092211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of long-term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.).
    Beyers JL; Riechers GH; Temple PJ
    New Phytol; 1992 Sep; 122(1):81-90. PubMed ID: 33874044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological responses of birch (Betula pendula) to ozone: a comparison between open-soil-grown trees exposed for six growing seasons and potted seedlings exposed for one season.
    Oksanen E
    Tree Physiol; 2003 Jun; 23(9):603-14. PubMed ID: 12750053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A; Peters GD; McIntyre LR; Harrington MG
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isozyme markers associated with O(3) tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, California.
    Staszak J; Grulke NE; Marrett MJ; Prus-Glowacki W
    Environ Pollut; 2007 Oct; 149(3):366-75. PubMed ID: 17698266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accentuation of gas exchange gradients in flushes of ponderosa pine exposed to ozone.
    Clark CS; Weber JA; Lee EH; Hogsett WE
    Tree Physiol; 1995 Mar; 15(3):181-9. PubMed ID: 14965974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth and physiological responses of Pinus ponderosa Dougl ex P. Laws. to long-term elevated CO(2) concentrations.
    Surano KA; Daley PF; Houpis JL; Shinn JH; Helms JA; Palassou RJ; Costella MP
    Tree Physiol; 1986 Dec; 2(1_2_3):243-259. PubMed ID: 14975858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.
    Phillips RP; Bernhardt ES; Schlesinger WH
    Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.
    Phillips DL; Johnson MG; Tingey DT; Storm MJ
    Oecologia; 2009 Jul; 160(4):827-37. PubMed ID: 19415339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Root and soil respiration responses to ozone in Pinus taeda L. seedlings*†.
    Edwards NT
    New Phytol; 1991 Jun; 118(2):315-321. PubMed ID: 33874182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO(2).
    Tissue DT; Griffin KL; Ball JT
    Tree Physiol; 1999 Apr; 19(4_5):221-228. PubMed ID: 12651564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-occurring species differ in tree-ring delta(18)O trends.
    Marshall JD; Monserud RA
    Tree Physiol; 2006 Aug; 26(8):1055-66. PubMed ID: 16651255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics.
    Grulke NE; Alonso R; Nguyen T; Cascio C; Dobrowolski W
    Tree Physiol; 2004 Sep; 24(9):1001-10. PubMed ID: 15234897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.
    Anderson PD; Palmer B; Houpis JL; Smith MK; Pushnik JC
    Environ Int; 2003 Jun; 29(2-3):407-13. PubMed ID: 12676234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water limitations to carbon exchange in old-growth and young ponderosa pine stands.
    Irvine J; Law BE; Anthoni PM; Meinzer FC
    Tree Physiol; 2002 Feb; 22(2-3):189-96. PubMed ID: 11830415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of prolonged drought stress on Scots pine seedling carbon allocation.
    Aaltonen H; Lindén A; Heinonsalo J; Biasi C; Pumpanen J
    Tree Physiol; 2017 Apr; 37(4):418-427. PubMed ID: 27974653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings.
    Kogawara S; Norisada M; Tange T; Yagi H; Kojima K
    Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leaf-level and whole-plant gas exchange characteristics of shortleaf pine exposed to ozone and simulated acid rain.
    Flagler RB; Lock JE; Elsik CG
    Tree Physiol; 1994 Apr; 14(4):361-74. PubMed ID: 14967692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine.
    Irvine J; Law BE; Kurpius MR; Anthoni PM; Moore D; Schwarz PA
    Tree Physiol; 2004 Jul; 24(7):753-63. PubMed ID: 15123447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.