These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 14759855)
1. Effects of elevated CO(2) on chloroplast components, gas exchange and growth of oak and cherry. Atkinson CJ; Taylor JM; Wilkins D; Besford RT Tree Physiol; 1997 May; 17(5):319-25. PubMed ID: 14759855 [TBL] [Abstract][Full Text] [Related]
2. Effects of elevated CO(2) on growth and chloroplast proteins in Prunus avium. Wilkins D; Van Oosten JJ; Besford RT Tree Physiol; 1994; 14(7_9):769-779. PubMed ID: 14967647 [TBL] [Abstract][Full Text] [Related]
3. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak. Rodríguez-Calcerrada J; Reich PB; Rosenqvist E; Pardos JA; Cano FJ; Aranda I Tree Physiol; 2008 May; 28(5):761-71. PubMed ID: 18316308 [TBL] [Abstract][Full Text] [Related]
4. Effect of root feeding by Diaprepes abbreviatus (Coleoptera: Curculionidae) larvae on leaf gas exchange and growth of three ornamental tree species. Diaz AP; Mannion C; Schaffer B J Econ Entomol; 2006 Jun; 99(3):811-21. PubMed ID: 16813316 [TBL] [Abstract][Full Text] [Related]
5. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2. Kitao M; Komatsu M; Yazaki K; Kitaoka S; Tobita H Environ Pollut; 2015 Nov; 206():133-41. PubMed ID: 26162332 [TBL] [Abstract][Full Text] [Related]
6. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur). Maillard P; Guehl JM; Muller JF; Gross P Tree Physiol; 2001 Feb; 21(2-3):163-72. PubMed ID: 11303647 [TBL] [Abstract][Full Text] [Related]
7. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Staudt M; Joffre R; Rambal S; Kesselmeier J Tree Physiol; 2001 May; 21(7):437-45. PubMed ID: 11340044 [TBL] [Abstract][Full Text] [Related]
8. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670 [TBL] [Abstract][Full Text] [Related]
9. Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO(2) and temperature. Tjoelker MG; Oleksyn J; Reich PB Tree Physiol; 1998 Nov; 18(11):715-726. PubMed ID: 12651406 [TBL] [Abstract][Full Text] [Related]
10. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Centritto M; Lucas ME; Jarvis PG Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151 [TBL] [Abstract][Full Text] [Related]
11. Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Juárez-López FJ; Escudero A; Mediavilla S Tree Physiol; 2008 Mar; 28(3):367-74. PubMed ID: 18171660 [TBL] [Abstract][Full Text] [Related]
12. Gas exchange and dry matter allocation responses to elevation of atmospheric CO(2) concentration in seedlings of three tree species. Hollinger DY Tree Physiol; 1987 Sep; 3(3):193-202. PubMed ID: 14975812 [TBL] [Abstract][Full Text] [Related]
13. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field. Tissue DT; Thomas RB; Strain BR Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747 [TBL] [Abstract][Full Text] [Related]
14. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Murray MB; Smith RI; Friend A; Jarvis PG Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438 [TBL] [Abstract][Full Text] [Related]
15. Growth, CO2 exchange rate and dry matter partitioning in mungbean (Vigna radiata L.) grown under elevated CO2. Srivastava AC; Pal M; Das M; Sengupta UK Indian J Exp Biol; 2001 Jun; 39(6):572-7. PubMed ID: 12562021 [TBL] [Abstract][Full Text] [Related]
16. Effects of long-term exposure to elevated CO(2) conditions in slow-growing plants using a (12)C-enriched CO(2)-labelling technique. Pardo A; Aranjuelo I; Biel C; Savé R; Azcón-Bieto J; Nogués S Rapid Commun Mass Spectrom; 2009 Jan; 23(2):282-90. PubMed ID: 19072866 [TBL] [Abstract][Full Text] [Related]
17. Photosynthetic acclimation to elevated atmospheric CO(2) concentration in the Florida scrub-oak species Quercus geminata and Quercus myrtifolia growing in their native environment. Li JH; Dijkstra P; Hinkle CR; Wheeler RM; Drake BG Tree Physiol; 1999 Apr; 19(4_5):229-234. PubMed ID: 12651565 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant and photoprotective responses to elevated CO(2) and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (near-infrared reflectance spectroscopy). Pintó-Marijuan M; Joffre R; Casals I; De Agazio M; Zacchini M; García-Plazaola JI; Esteban R; Aranda X; Guàrdia M; Fleck I Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():5-17. PubMed ID: 22243620 [TBL] [Abstract][Full Text] [Related]
19. Interactive effects of elevated CO(2) and mineral nutrition on growth and CO(2) exchange of sweet chestnut seedlings (Castanea sativa). El Kohen A; Mousseau M Tree Physiol; 1994; 14(7_9):679-690. PubMed ID: 14967640 [TBL] [Abstract][Full Text] [Related]
20. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]