These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 14759855)
21. Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere. Domínguez MT; Marañón T; Murillo JM; Redondo-Gómez S Chemosphere; 2011 May; 83(8):1166-74. PubMed ID: 21281955 [TBL] [Abstract][Full Text] [Related]
22. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
23. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes. Gardiner ES; Krauss KW Tree Physiol; 2001 Sep; 21(15):1103-11. PubMed ID: 11581017 [TBL] [Abstract][Full Text] [Related]
24. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period]. Schulze E-; Lange OL; Koch W Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256 [TBL] [Abstract][Full Text] [Related]
25. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis). Hieke S; Menzel CM; Lüdders P Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578 [TBL] [Abstract][Full Text] [Related]
26. Interactive effects of ozone and elevated carbon dioxide on the growth and physiology of black cherry, green ash, and yellow-poplar seedlings. Loats KV; Rebbeck J Environ Pollut; 1999 Aug; 106(2):237-48. PubMed ID: 15093051 [TBL] [Abstract][Full Text] [Related]
27. Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum seedlings. Gottschalk KW Tree Physiol; 1994; 14(7_9):735-749. PubMed ID: 14967644 [TBL] [Abstract][Full Text] [Related]
28. Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Wullschleger SD; Norby RJ; Hendrix DL Tree Physiol; 1992 Jan; 10(1):21-31. PubMed ID: 14969872 [TBL] [Abstract][Full Text] [Related]
29. Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions. Pezeshki SR; Pardue JH; DeLaune RD Tree Physiol; 1996 Apr; 16(4):453-8. PubMed ID: 14871732 [TBL] [Abstract][Full Text] [Related]
30. [Effects of elevated CO2 or/and O3 on growth and daily changes of photosynthesis in leaves of Pinus armandi]. Wang LL; He XY; Chen W Huan Jing Ke Xue; 2010 Jan; 31(1):36-40. PubMed ID: 20329513 [TBL] [Abstract][Full Text] [Related]
31. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Peña-Rojas K; Aranda X; Fleck I Tree Physiol; 2004 Jul; 24(7):813-22. PubMed ID: 15123453 [TBL] [Abstract][Full Text] [Related]
32. Effects of scale insect herbivory and shading on net gas exchange and growth of a subtropical tree species (Guaiacum sanctum L.). Schaffer B; Mason LJ Oecologia; 1990 Oct; 84(4):468-473. PubMed ID: 28312962 [TBL] [Abstract][Full Text] [Related]
33. Effects of elevated CO(2) and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Kubiske ME; Pregitzer KS Tree Physiol; 1996 Mar; 16(3):351-8. PubMed ID: 14871736 [TBL] [Abstract][Full Text] [Related]
34. Diurnal and seasonal changes in the impact of CO(2) enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet-dry tropics of Australia. Goodfellow J; Eamus D; Duff G Tree Physiol; 1997 May; 17(5):291-9. PubMed ID: 14759852 [TBL] [Abstract][Full Text] [Related]
35. Growth dynamics and water use of seedlings of Quercus alba L. in CO Norby RJ; O'Neill EG New Phytol; 1989 Mar; 111(3):491-500. PubMed ID: 33874010 [TBL] [Abstract][Full Text] [Related]
36. Growth and gas exchange in field-grown and greenhouse-grown Quercus rubra following three years of exposure to enhanced UV-B radiation. Bassman JH; Robberecht R Tree Physiol; 2006 Sep; 26(9):1153-63. PubMed ID: 16740491 [TBL] [Abstract][Full Text] [Related]
37. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. Xu CY; Salih A; Ghannoum O; Tissue DT J Exp Bot; 2012 Oct; 63(16):5829-41. PubMed ID: 22915750 [TBL] [Abstract][Full Text] [Related]
38. Responses of two closely related oak species, Quercus robur and Q. petraea, to excess manganese concentrations in the rooting medium. Thomas FM; Sprenger S Tree Physiol; 2008 Mar; 28(3):343-53. PubMed ID: 18171658 [TBL] [Abstract][Full Text] [Related]
39. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Zhang S; Dang QL Tree Physiol; 2006 Nov; 26(11):1457-67. PubMed ID: 16877330 [TBL] [Abstract][Full Text] [Related]
40. Differential responses of peach (Prunus persica) seedlings to elevated ozone are related with leaf mass per area, antioxidant enzymes activity rather than stomatal conductance. Dai L; Li P; Shang B; Liu S; Yang A; Wang Y; Feng Z Environ Pollut; 2017 Aug; 227():380-388. PubMed ID: 28482318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]