BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 14759910)

  • 21. Analysis of gas exchange in seedlings of Acer saccharum: integration of field and laboratory studies.
    Weber JA; Jurik TW; Tenhunen JD; Gates DM
    Oecologia; 1985 Feb; 65(3):338-347. PubMed ID: 28310437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of current-year and previous-year PPFDs on shoot gross morphology and leaf properties in Fagus japonica.
    Kimura K; Ishida A; Uemura A; Matsumoto Y; Terashima I
    Tree Physiol; 1998 Jul; 18(7):459-466. PubMed ID: 12651357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance.
    Bond BJ; Farnsworth BT; Coulombe RA; Winner WE
    Oecologia; 1999 Aug; 120(2):183-192. PubMed ID: 28308078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO
    Naumburg E; Ellsworth DS
    Oecologia; 2000 Feb; 122(2):163-174. PubMed ID: 28308370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient.
    Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y
    Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms.
    Liu J; van Iersel MW
    Front Plant Sci; 2021; 12():619987. PubMed ID: 33747002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants.
    Königer M; Harris GC; Virgo A; Winter K
    Oecologia; 1995 Nov; 104(3):280-290. PubMed ID: 28307583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis).
    Murray MB; Smith RI; Friend A; Jarvis PG
    Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating Light Acclimation Parameters of Cucumber Leaves Using Time-Weighted Averages of Daily Photosynthetic Photon Flux Density.
    Yu L; Fujiwara K; Matsuda R
    Front Plant Sci; 2021; 12():809046. PubMed ID: 35211135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is elevation of carbon dioxide concentration beneficial to seedling photosynthesis in the understory of tropical rain forests?
    Liang N; Tang Y; Okuda T
    Tree Physiol; 2001 Sep; 21(14):1047-55. PubMed ID: 11560818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Spatiotemporal distribution pattern of photosynthetic photon flux density in forest gaps of Korean pine broadleaved mixed forest].
    Li M; Duan WB; Chen LX
    Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):880-4. PubMed ID: 21774307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthetic characteristics of dipterocarp seedlings in three tropical rain forest light environments: a basis for niche partitioning?
    Barker MG; Press MC; Brown ND
    Oecologia; 1997 Nov; 112(4):453-463. PubMed ID: 28307621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska.
    Harley PC; Tenhunen JD; Murray KJ; Beyers J
    Oecologia; 1989 May; 79(2):251-259. PubMed ID: 28312862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative physiology and demography of three Neotropical forest shrubs: alternative shade-adaptive character syndromes.
    Mulkey SS; Wright SJ; Smith AP
    Oecologia; 1993 Dec; 96(4):526-536. PubMed ID: 28312459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes.
    Gardiner ES; Krauss KW
    Tree Physiol; 2001 Sep; 21(15):1103-11. PubMed ID: 11581017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steady-state and dynamic photosynthetic response of Adenocaulon bicolor (Asteraceae) in its redwood forest habitat.
    Pfitsch WA; Pearcy RW
    Oecologia; 1989 Sep; 80(4):471-476. PubMed ID: 28312830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosynthetic Photon Flux Density Effects on
    Kudirka G; Viršilė A; Laužikė K; Sutulienė R; Samuolienė G
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species.
    Sefcik LT; Zak DR; Ellsworth DS
    Tree Physiol; 2006 Dec; 26(12):1589-99. PubMed ID: 17169898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses.
    Montgomery RA; Givnish TJ
    Oecologia; 2008 Mar; 155(3):455-67. PubMed ID: 18210160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation in photosynthetic photon flux density within a tropical seasonal rain forest of Xishuangbanna, south-western China.
    Dou JX; Zhang YP; Feng ZW; Liu WJ
    J Environ Sci (China); 2005; 17(6):966-9. PubMed ID: 16465888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.