These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 14760855)

  • 1. Evaluation of a structure-driven retention model for temperature-programmed gas chromatography.
    Nawas MI; Poole CF
    J Chromatogr A; 2004 Jan; 1023(1):113-21. PubMed ID: 14760855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the solvation parameter model as a quantitative structure-retention relationship model for gas and liquid chromatography.
    Poole CF
    J Chromatogr A; 2020 Aug; 1626():461308. PubMed ID: 32797813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of the system constants database for open-tubular columns: system maps at low and intermediate temperatures for four new columns.
    Atapattu SN; Eggers K; Poole CF; Kiridena W; Koziol WW
    J Chromatogr A; 2009 Mar; 1216(10):1640-9. PubMed ID: 19081101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute descriptors for characterizing retention properties of open-tubular columns of different selectivity in gas chromatography at intermediate temperatures.
    Atapattu SN; Poole CF
    J Chromatogr A; 2008 Jun; 1195(1-2):136-45. PubMed ID: 18501372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of sources of irreproducibility of retention indices under programmed temperature gas chromatography conditions.
    Wu L; Cho IK; Li Y; Zhang G; Li QX
    J Chromatogr A; 2017 Apr; 1495():57-63. PubMed ID: 28343685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Retention index of essential oil in temperature-programmed capillary column gas chromatography].
    Chang LP; Sheng LS; Yang MZ; An DK
    Yao Xue Xue Bao; 1989; 24(11):847-52. PubMed ID: 2618683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention models for programmed gas chromatography.
    Castello G; Moretti P; Vezzani S
    J Chromatogr A; 2009 Mar; 1216(10):1607-23. PubMed ID: 19081102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between characteristic temperature and elution temperature in temperature programmed gas chromatography - Part II: Influence of column properties.
    Brehmer T; Boeker P; Wüst M; Leppert J
    J Chromatogr A; 2024 Aug; 1728():464997. PubMed ID: 38821031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of retention times in linear gradient temperature and pressure programmed analysis on capillary columns.
    Vezzani S; Moretti P; Mazzi M; Castello G
    J Chromatogr A; 2004 Nov; 1055(1-2):151-8. PubMed ID: 15560491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of calibration compounds for selectivity evaluation of wall-coated, open-tubular columns for gas chromatography by the solvation parameter model.
    Poole CF
    J Chromatogr A; 2020 Oct; 1629():461500. PubMed ID: 32861091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention modeling and retention time prediction in gas chromatography and flow-modulation comprehensive two-dimensional gas chromatography: The contribution of pressure on solute partition.
    Burel A; Vaccaro M; Cartigny Y; Tisse S; Coquerel G; Cardinael P
    J Chromatogr A; 2017 Feb; 1485():101-119. PubMed ID: 28108081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention indexes for temperature-programmed gas chromatography of polychlorinated biphenyls.
    Chu S; Hong CS
    Anal Chem; 2004 Sep; 76(18):5486-97. PubMed ID: 15362911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the separation characteristics of application-specific (fatty acid methyl esters) open-tubular columns for gas chromatography.
    Kiridena W; Qian J; Koziol WW; Poole CF
    J Sep Sci; 2007 Mar; 30(5):740-5. PubMed ID: 17461115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention time prediction of compounds in Grob standard mixture for apolar capillary columns in temperature-programmed gas chromatography.
    Thewalim Y; Aldaeus F; Colmsjö A
    Anal Bioanal Chem; 2009 Jan; 393(1):327-34. PubMed ID: 18751687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases.
    Matyushin DD; Sholokhova AY; Buryak AK
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of gas-liquid chromatography to the analysis of essential oils. Part XVII. Fingerprinting of essential oils by temperature-programmed gas-liquid chromatography using capillary columns with non-polar stationary phases. Analytical methods committee.
    Analyst; 1997 Oct; 122(10):1167-74. PubMed ID: 9463975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of retention times and efficiency in linear gradient programmed pressure analysis on capillary columns.
    Vezzani S; Moretti P; Castello G
    J Chromatogr A; 2004 Nov; 1055(1-2):141-50. PubMed ID: 15560490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas chromatographic retention indices of biologically and environmentally important organic compounds on capillary columns with low-polar stationary phases.
    Isidorov VA; Szczepaniak L
    J Chromatogr A; 2009 Dec; 1216(51):8998-9007. PubMed ID: 19909962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of solvation parameter model compound descriptors by gas chromatography.
    Poole CF
    J Chromatogr A; 2024 Feb; 1717():464711. PubMed ID: 38320433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas chromatography system constant database over an extended temperature range for nine open-tubular columns.
    Poole CF
    J Chromatogr A; 2019 Apr; 1590():130-145. PubMed ID: 30770145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.