These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 14760855)
21. Assessment of the selectivity equivalence of DB-608 and DB-624 open-tubular columns for gas chromatography. Kiridena W; Patchett CC; Koziol WW; Poole CF J Sep Sci; 2004 Nov; 27(15-16):1333-8. PubMed ID: 15587283 [TBL] [Abstract][Full Text] [Related]
22. Characterization by the solvation parameter model of the retention properties of commercial ionic liquid columns for gas chromatography. Rodríguez-Sánchez S; Galindo-Iranzo P; Soria AC; Sanz ML; Quintanilla-López JE; Lebrón-Aguilar R J Chromatogr A; 2014 Jan; 1326():96-102. PubMed ID: 24373774 [TBL] [Abstract][Full Text] [Related]
24. Large-scale statistical study of the dependence of retention index on heating rate in temperature-programmed gas chromatography. Matyushin DD; Sholokhova AY J Chromatogr A; 2024 Sep; 1732():465223. PubMed ID: 39111182 [TBL] [Abstract][Full Text] [Related]
25. Band-trajectory model for temperature-programmed series-coupled column ensembles with pressure-tunable selectivity. McGuigan M; Sacks R Anal Chem; 2001 Jul; 73(13):3112-8. PubMed ID: 11467561 [TBL] [Abstract][Full Text] [Related]
26. Transfer of retention patterns in gas chromatography by means of response surface methodology. Chhaganlal M; Skartland LK; Mjøs SA J Chromatogr A; 2014 Mar; 1332():64-72. PubMed ID: 24529956 [TBL] [Abstract][Full Text] [Related]
27. Model for predicting comprehensive two-dimensional gas chromatography retention times. Seeley JV; Seeley SK J Chromatogr A; 2007 Nov; 1172(1):72-83. PubMed ID: 17936771 [TBL] [Abstract][Full Text] [Related]
28. Prediction of retention times in temperature programmed gas chromatography using the retention equation derived from crystallization behavior of polymer. Li X; Fan G; Gong C; Ao M; Li H J Chromatogr A; 2013 Feb; 1277():76-83. PubMed ID: 23332784 [TBL] [Abstract][Full Text] [Related]
29. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethanesulfonate for gas chromatography. Lenca N; Poole CF J Chromatogr A; 2018 Jul; 1559():164-169. PubMed ID: 28619588 [TBL] [Abstract][Full Text] [Related]
30. Prediction of the plate height of capillary columns operated at any inlet pressure of the carrier gas by using few retention data measured under isobaric conditions. Vezzani S; Moretti P; Castello G J Chromatogr A; 2003 Apr; 994(1-2):103-25. PubMed ID: 12779223 [TBL] [Abstract][Full Text] [Related]
31. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide for gas chromatography. Lenca N; Poole CF J Chromatogr A; 2017 Nov; 1525():138-144. PubMed ID: 29030038 [TBL] [Abstract][Full Text] [Related]
32. Revised solute descriptors for characterizing retention properties of open-tubular columns in gas chromatography and their application to a carborane-siloxane copolymer stationary phase. Poole CF; Ahmed H; Kiridena W; Patchett CC; Koziol WW J Chromatogr A; 2006 Feb; 1104(1-2):299-312. PubMed ID: 16343516 [TBL] [Abstract][Full Text] [Related]
33. Simulation of gas chromatographic separations and estimation of distribution-centric retention parameters using linear solvation energy relationships. Brehmer T; Duong B; Boeker P; Wüst M; Leppert J J Chromatogr A; 2024 Feb; 1717():464665. PubMed ID: 38281342 [TBL] [Abstract][Full Text] [Related]
34. Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index. Peng CT J Chromatogr A; 2000 Dec; 903(1-2):117-43. PubMed ID: 11153935 [TBL] [Abstract][Full Text] [Related]
35. Selectivity assessment of popular stationary phases for open-tubular column gas chromatography. Poole CF; Li Q; Kiridena W; Koziol WW J Chromatogr A; 2001 Mar; 912(1):107-17. PubMed ID: 11307973 [TBL] [Abstract][Full Text] [Related]
36. A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times. McGinitie TM; Ebrahimi-Najafabadi H; Harynuk JJ J Chromatogr A; 2014 Feb; 1330():69-73. PubMed ID: 24484693 [TBL] [Abstract][Full Text] [Related]
37. Selectivity equivalence of two poly(methylphenylsiloxane) open-tubular columns prepared with different deactivation techniques for gas chromatography. Atapattu SN; Poole CF J Chromatogr A; 2008 Mar; 1185(2):305-9. PubMed ID: 18313065 [TBL] [Abstract][Full Text] [Related]
38. Selectivity equivalence of poly(ethylene glycol) stationary phases for gas chromatography. Poole CF; Li Q; Kiridena W; Koziol WW J Chromatogr A; 2000 Nov; 898(2):211-26. PubMed ID: 11117419 [TBL] [Abstract][Full Text] [Related]
39. Separation performance of guanidinium-based ionic liquids as stationary phases for gas chromatography. Qiao L; Lu K; Qi M; Fu R J Chromatogr A; 2013 Feb; 1276():112-9. PubMed ID: 23313301 [TBL] [Abstract][Full Text] [Related]
40. Prediction of retention times in comprehensive two-dimensional gas chromatography using thermodynamic models. McGinitie TM; Harynuk JJ J Chromatogr A; 2012 Sep; 1255():184-9. PubMed ID: 22386257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]