These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1476174)

  • 1. Lactate in rat skeletal muscle after hemorrhage measured by microdialysis probe calibrated in situ.
    Okuda C; Sawa T; Harada M; Murakami T; Matsuda T; Tanaka Y
    Am J Physiol; 1992 Dec; 263(6):E1035-9. PubMed ID: 1476174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous measurement of lactate concentration in skeletal muscle and liver interstitium using a microdialysis method after acute hemorrhage in anesthetized rats.
    Okuda C; Sawa T; Harada M; Murakami T; Tanaka Y
    Circ Shock; 1992 Jul; 37(3):230-5. PubMed ID: 1423914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous monitoring of extracellular lactate concentration by microdialysis lactography for the study of rat muscle metabolism in vivo.
    de Boer J; Postema F; Plijter-Groendijk H; Korf J
    Pflugers Arch; 1991 Aug; 419(1):1-6. PubMed ID: 1945755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interstitial glucose and lactate balance in human skeletal muscle and adipose tissue studied by microdialysis.
    Rosdahl H; Ungerstedt U; Jorfeldt L; Henriksson J
    J Physiol; 1993 Nov; 471():637-57. PubMed ID: 8120827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in muscle and liver lactate concentrations after endotoxin infusion in rats.
    Harada M; Okuda C; Sawa T; Fuse A; Imai H; Tanaka Y
    Circ Shock; 1994 Aug; 43(4):166-70. PubMed ID: 7895321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cerebral blood flow do not directly affect in vivo recovery of extracellular lactate through microdialysis probe.
    Kurosawa M; Hallström A; Ungerstedt U
    Neurosci Lett; 1991 May; 126(2):123-6. PubMed ID: 1922922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microdialysis methodology for the measurement of dermal interstitial fluid in humans.
    Krogstad AL; Jansson PA; Gisslén P; Lönnroth P
    Br J Dermatol; 1996 Jun; 134(6):1005-12. PubMed ID: 8763416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis.
    MacLean DA; Bangsbo J; Saltin B
    J Appl Physiol (1985); 1999 Oct; 87(4):1483-90. PubMed ID: 10517782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular-intracellular lactate gradients in skeletal muscle during hemorrhagic shock in the rat.
    Pearce FJ; Connett RJ; Drucker WR
    Surgery; 1985 Oct; 98(4):625-31. PubMed ID: 4049240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Interstitial microdialysis study of changes in metabolism and blood flow in skeletal muscles during cardiac surgery with normothermic and hypothermic extracorporeal circulation].
    Mand'ák J; Zivný P; Lonský V; Palicka V; Kakrdová D; Marsíková M; Kunes P; Kubícek J
    Rozhl Chir; 2003 Sep; 82(9):460-8. PubMed ID: 14658254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of glucose load on brain extracellular lactate concentration in conscious rats using a microdialysis technique.
    Harada M; Sawa T; Okuda C; Matsuda T; Tanaka Y
    Horm Metab Res; 1993 Nov; 25(11):560-3. PubMed ID: 8288157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of glucose and lactate using microdialysis: applications in neonates and rat brain.
    Korf J; de Boer J; Baarsma R; Venema K; Okken A
    Dev Neurosci; 1993; 15(3-5):240-6. PubMed ID: 7805576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ethanol technique of monitoring local blood flow changes in rat skeletal muscle: implications for microdialysis.
    Hickner RC; Rosdahl H; Borg I; Ungerstedt U; Jorfeldt L; Henriksson J
    Acta Physiol Scand; 1992 Sep; 146(1):87-97. PubMed ID: 1442130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of changes in extracellular lactate evoked by transient K(+)-induced depolarisation in the rat striatum.
    Taylor DL; Richards DA; Obrenovitch TP; Symon L
    J Neurochem; 1994 Jun; 62(6):2368-74. PubMed ID: 8189242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral extracellular glucose and lactate concentrations during and after moderate hypoxia in glucose- and saline-infused rats.
    Harada M; Okuda C; Sawa T; Murakami T
    Anesthesiology; 1992 Oct; 77(4):728-34. PubMed ID: 1416170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of extracellular buffer concentration and propionate on lactate efflux from frog muscle.
    Mason MJ; Mainwood GW; Thoden JS
    Pflugers Arch; 1986 May; 406(5):472-9. PubMed ID: 3487074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liver and skeletal muscle metabolism, extracellular K+ concentrations, and survival in spontaneously hypertensive rats following acute blood loss.
    Hagberg H; Haljamäe H; Johansson B; Petterson B; Wennberg E
    Circ Shock; 1983; 10(1):61-70. PubMed ID: 6831642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of an endogenous reference technique for the calibration of microdialysis catheters.
    Strindberg L; Lönnroth P
    Scand J Clin Lab Invest; 2000 May; 60(3):205-11. PubMed ID: 10885492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of skeletal muscle and liver on lactate metabolism during hypoxia in rats.
    Fuse A
    J Anesth; 1999; 13(3):161-5. PubMed ID: 14530936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial interstitial purine metabolites and lactate with increased work in swine.
    Hall JL; Van Wylen DG; Pizzurro RD; Hamilton CD; Reiling CM; Stanley WC
    Cardiovasc Res; 1995 Sep; 30(3):351-6. PubMed ID: 7585825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.