BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 14761942)

  • 1. The effect of disease-associated mutations on the folding pathway of human prion protein.
    Apetri AC; Surewicz K; Surewicz WK
    J Biol Chem; 2004 Apr; 279(17):18008-14. PubMed ID: 14761942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic intermediate in the folding of human prion protein.
    Apetri AC; Surewicz WK
    J Biol Chem; 2002 Nov; 277(47):44589-92. PubMed ID: 12356762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie-like form.
    Vanik DL; Surewicz WK
    J Biol Chem; 2002 Dec; 277(50):49065-70. PubMed ID: 12372829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early intermediate in human prion protein folding as evidenced by ultrarapid mixing experiments.
    Apetri AC; Maki K; Roder H; Surewicz WK
    J Am Chem Soc; 2006 Sep; 128(35):11673-8. PubMed ID: 16939293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates.
    Wildegger G; Liemann S; Glockshuber R
    Nat Struct Biol; 1999 Jun; 6(6):550-3. PubMed ID: 10360358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein.
    Leliveld SR; Stitz L; Korth C
    Biochemistry; 2008 Jun; 47(23):6267-78. PubMed ID: 18473442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein.
    Morillas M; Vanik DL; Surewicz WK
    Biochemistry; 2001 Jun; 40(23):6982-7. PubMed ID: 11389614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and intrinsic stability of deletion variants of PrP(121-231), the folded C-terminal domain of the prion protein.
    Eberl H; Glockshuber R
    Biophys Chem; 2002 May; 96(2-3):293-303. PubMed ID: 12034448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature.
    Martins SM; Chapeaurouge A; Ferreira ST
    J Biol Chem; 2003 Dec; 278(50):50449-55. PubMed ID: 14525996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autocatalytic conversion of recombinant prion proteins displays a species barrier.
    Baskakov IV
    J Biol Chem; 2004 Feb; 279(9):7671-7. PubMed ID: 14668351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of disulfide bridge in the folding and stability of the recombinant human prion protein.
    Maiti NR; Surewicz WK
    J Biol Chem; 2001 Jan; 276(4):2427-31. PubMed ID: 11069909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized overproduction, purification, characterization and high-pressure sensitivity of the prion protein in the native (PrP(C)-like) or amyloid (PrP(Sc)-like) conformation.
    Alvarez-Martinez MT; Torrent J; Lange R; Verdier JM; Balny C; Liautard JP
    Biochim Biophys Acta; 2003 Feb; 1645(2):228-40. PubMed ID: 12573253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume and energy folding landscape of prion protein revealed by pressure.
    Cordeiro Y; Kraineva J; Winter R; Silva JL
    Braz J Med Biol Res; 2005 Aug; 38(8):1195-201. PubMed ID: 16082459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences between the prion protein and its homolog Doppel: a partially structured state with implications for scrapie formation.
    Nicholson EM; Mo H; Prusiner SB; Cohen FE; Marqusee S
    J Mol Biol; 2002 Feb; 316(3):807-15. PubMed ID: 11866533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure.
    Hadži S; Ondračka A; Jerala R; Hafner-Bratkovič I
    FASEB J; 2015 Mar; 29(3):882-93. PubMed ID: 25416551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic characterization for the denatured state of bovine prion protein and the BSE Associated variant E211K.
    Hwang S; Nicholson EM
    Prion; 2018; 12(5-6):301-309. PubMed ID: 30354921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic stabilization of the folded domain of prion protein inhibits prion infection in vivo.
    Kong Q; Mills JL; Kundu B; Li X; Qing L; Surewicz K; Cali I; Huang S; Zheng M; Swietnicki W; Sönnichsen FD; Gambetti P; Surewicz WK
    Cell Rep; 2013 Jul; 4(2):248-54. PubMed ID: 23871665
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Eraña H; Fernández-Borges N; Elezgarai SR; Harrathi C; Charco JM; Chianini F; Dagleish MP; Ortega G; Millet Ó; Castilla J
    J Virol; 2017 Dec; 91(24):. PubMed ID: 28978705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid folding of the prion protein captured by pressure-jump.
    Jenkins DC; Pearson DS; Harvey A; Sylvester ID; Geeves MA; Pinheiro TJT
    Eur Biophys J; 2009 Jun; 38(5):625-635. PubMed ID: 19255752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein.
    Liemann S; Glockshuber R
    Biochemistry; 1999 Mar; 38(11):3258-67. PubMed ID: 10079068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.