These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 14762127)

  • 1. Linearity of cortical receptive fields measured with natural sounds.
    Machens CK; Wehr MS; Zador AM
    J Neurosci; 2004 Feb; 24(5):1089-100. PubMed ID: 14762127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
    Christianson GB; Sahani M; Linden JF
    J Neurosci; 2008 Jan; 28(2):446-55. PubMed ID: 18184787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
    Laudanski J; Edeline JM; Huetz C
    PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
    Theunissen FE; Sen K; Doupe AJ
    J Neurosci; 2000 Mar; 20(6):2315-31. PubMed ID: 10704507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Essential Complexity of Auditory Receptive Fields.
    Thorson IL; Liénard J; David SV
    PLoS Comput Biol; 2015 Dec; 11(12):e1004628. PubMed ID: 26683490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.
    Harper NS; Schoppe O; Willmore BD; Cui Z; Schnupp JW; King AJ
    PLoS Comput Biol; 2016 Nov; 12(11):e1005113. PubMed ID: 27835647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic spectrotemporal feature selectivity in the auditory midbrain.
    Lesica NA; Grothe B
    J Neurosci; 2008 May; 28(21):5412-21. PubMed ID: 18495875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods.
    Ahrens MB; Linden JF; Sahani M
    J Neurosci; 2008 Feb; 28(8):1929-42. PubMed ID: 18287509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
    Calabrese A; Schumacher JW; Schneider DM; Paninski L; Woolley SM
    PLoS One; 2011 Jan; 6(1):e16104. PubMed ID: 21264310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing.
    Willmore BD; Schoppe O; King AJ; Schnupp JW; Harper NS
    J Neurosci; 2016 Jan; 36(2):280-9. PubMed ID: 26758822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do auditory cortex neurons represent communication sounds?
    Gaucher Q; Huetz C; Gourévitch B; Laudanski J; Occelli F; Edeline JM
    Hear Res; 2013 Nov; 305():102-12. PubMed ID: 23603138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrotemporal contrast kernels for neurons in primary auditory cortex.
    Rabinowitz NC; Willmore BD; Schnupp JW; King AJ
    J Neurosci; 2012 Aug; 32(33):11271-84. PubMed ID: 22895711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing contextual effects in spectro-temporal receptive fields.
    Westö J; May PJ
    Hear Res; 2016 Sep; 339():195-210. PubMed ID: 27473504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast tuned responses in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Eur J Neurosci; 2012 Feb; 35(4):550-61. PubMed ID: 22321018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex.
    Atencio CA; Schreiner CE
    PLoS One; 2012; 7(2):e31537. PubMed ID: 22384036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
    Linden JF; Liu RC; Sahani M; Schreiner CE; Merzenich MM
    J Neurophysiol; 2003 Oct; 90(4):2660-75. PubMed ID: 12815016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extra-classical tuning predicts stimulus-dependent receptive fields in auditory neurons.
    Schneider DM; Woolley SM
    J Neurosci; 2011 Aug; 31(33):11867-78. PubMed ID: 21849547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
    Homma NY; Atencio CA; Schreiner CE
    Neuroscience; 2021 Jul; 467():150-170. PubMed ID: 33951506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. II. Predicting responses with the use of nonlinear models.
    Nelken I; Kim PJ; Young ED
    J Neurophysiol; 1997 Aug; 78(2):800-11. PubMed ID: 9307114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain.
    Woolley SM; Gill PR; Theunissen FE
    J Neurosci; 2006 Mar; 26(9):2499-512. PubMed ID: 16510728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.