These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 14762131)

  • 1. Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance.
    Cools R; Clark L; Robbins TW
    J Neurosci; 2004 Feb; 24(5):1129-35. PubMed ID: 14762131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural evidence for dissociable components of task-switching.
    Crone EA; Wendelken C; Donohue SE; Bunge SA
    Cereb Cortex; 2006 Apr; 16(4):475-86. PubMed ID: 16000652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.
    Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR
    J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging.
    Cools R; Clark L; Owen AM; Robbins TW
    J Neurosci; 2002 Jun; 22(11):4563-7. PubMed ID: 12040063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medial prefrontal and subcortical mechanisms underlying the acquisition of motor and cognitive action sequences in humans.
    Koechlin E; Danek A; Burnod Y; Grafman J
    Neuron; 2002 Jul; 35(2):371-81. PubMed ID: 12160754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of the cerebellum and basal ganglia in timing and error prediction.
    Dreher JC; Grafman J
    Eur J Neurosci; 2002 Oct; 16(8):1609-19. PubMed ID: 12405975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder.
    Remijnse PL; Nielen MM; van Balkom AJ; Cath DC; van Oppen P; Uylings HB; Veltman DJ
    Arch Gen Psychiatry; 2006 Nov; 63(11):1225-36. PubMed ID: 17088503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong.
    Pischedda D; Görgen K; Haynes JD; Reverberi C
    J Neurosci; 2017 Dec; 37(50):12281-12296. PubMed ID: 29114072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching.
    van Schouwenburg MR; den Ouden HE; Cools R
    Cereb Cortex; 2015 Jun; 25(6):1527-34. PubMed ID: 24343891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefrontal organization of cognitive control according to levels of abstraction.
    Christoff K; Keramatian K; Gordon AM; Smith R; Mädler B
    Brain Res; 2009 Aug; 1286():94-105. PubMed ID: 19505444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T; Hirsch J
    Nat Neurosci; 2005 Dec; 8(12):1784-90. PubMed ID: 16286928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.
    Fazio L; Logroscino G; Taurisano P; Amico G; Quarto T; Antonucci LA; Barulli MR; Mancini M; Gelao B; Ferranti L; Popolizio T; Bertolino A; Blasi G
    PLoS One; 2016; 11(10):e0165301. PubMed ID: 27798669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchically Organized Medial Frontal Cortex-Basal Ganglia Loops Selectively Control Task- and Response-Selection.
    Korb FM; Jiang J; King JA; Egner T
    J Neurosci; 2017 Aug; 37(33):7893-7905. PubMed ID: 28716966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function.
    Christakou A; Robbins TW; Everitt BJ
    J Neurosci; 2004 Jan; 24(4):773-80. PubMed ID: 14749421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.
    Kim YJ; Tsai JJ; Ojemann J; Verghese P
    J Neurosci; 2017 May; 37(19):4942-4953. PubMed ID: 28411268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A developmental neuroimaging investigation of the change paradigm.
    Thomas LA; Hall JM; Skup M; Jenkins SE; Pine DS; Leibenluft E
    Dev Sci; 2011 Jan; 14(1):148-61. PubMed ID: 21159096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal networks for learning and executing arbitrary stimulus-response associations.
    Boettiger CA; D'Esposito M
    J Neurosci; 2005 Mar; 25(10):2723-32. PubMed ID: 15758182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.