These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 14762706)

  • 1. Calculating biological behaviors of epigenetic states in the phage lambda life cycle.
    Zhu XM; Yin L; Hood L; Ao P
    Funct Integr Genomics; 2004 Jul; 4(3):188-95. PubMed ID: 14762706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness, stability and efficiency of phage lambda genetic switch: dynamical structure analysis.
    Zhu XM; Yin L; Hood L; Ao P
    J Bioinform Comput Biol; 2004 Dec; 2(4):785-817. PubMed ID: 15617166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda.
    Cao Y; Lu HM; Liang J
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18445-50. PubMed ID: 20937911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of gene regulatory networks and their dependence on network topology and quantitative parameters - the case of phage λ.
    Ruklisa D; Brazma A; Cerans K; Schlitt T; Viksna J
    BMC Bioinformatics; 2019 May; 20(1):296. PubMed ID: 31151381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic cellular fate decision making by multiple infecting lambda phage.
    Robb ML; Shahrezaei V
    PLoS One; 2014; 9(8):e103636. PubMed ID: 25105971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA looping provides stability and robustness to the bacteriophage lambda switch.
    Morelli MJ; Ten Wolde PR; Allen RJ
    Proc Natl Acad Sci U S A; 2009 May; 106(20):8101-6. PubMed ID: 19416825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic probability landscape model for switching efficiency, robustness, and differential threshold for induction of genetic circuit in phage lambda.
    Cao Y; Lu HM; Liang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():611-4. PubMed ID: 19162730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling of the lambda switch: a fuzzy logic approach.
    Laschov D; Margaliot M
    J Theor Biol; 2009 Oct; 260(4):475-89. PubMed ID: 19589343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lambda phage genetic switch as a system with critical behaviour.
    Vohradsky J
    J Theor Biol; 2017 Oct; 431():32-38. PubMed ID: 28754287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative kinetic analysis of the bacteriophage lambda genetic network.
    Kobiler O; Rokney A; Friedman N; Court DL; Stavans J; Oppenheim AB
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4470-5. PubMed ID: 15728384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental analysis of the phage lambda genetic switch implies missing levels of co-operativity.
    Reinitz J; Vaisnys JR
    J Theor Biol; 1990 Aug; 145(3):295-318. PubMed ID: 2146446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To lyse or not to lyse: transient-mediated stochastic fate determination in cells infected by bacteriophages.
    Joh RI; Weitz JS
    PLoS Comput Biol; 2011 Mar; 7(3):e1002006. PubMed ID: 21423715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bistability and switching in the lysis/lysogeny genetic regulatory network of bacteriophage lambda.
    Tian T; Burrage K
    J Theor Biol; 2004 Mar; 227(2):229-37. PubMed ID: 14990387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA supercoiling enhances cooperativity and efficiency of an epigenetic switch.
    Norregaard K; Andersson M; Sneppen K; Nielsen PE; Brown S; Oddershede LB
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17386-91. PubMed ID: 24101469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells.
    Arkin A; Ross J; McAdams HH
    Genetics; 1998 Aug; 149(4):1633-48. PubMed ID: 9691025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switches in bacteriophage lambda development.
    Oppenheim AB; Kobiler O; Stavans J; Court DL; Adhya S
    Annu Rev Genet; 2005; 39():409-29. PubMed ID: 16285866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage λ--new insights into regulatory circuits.
    Węgrzyn G; Licznerska K; Węgrzyn A
    Adv Virus Res; 2012; 82():155-78. PubMed ID: 22420854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Logical modelling of gene regulatory networks with GINsim.
    Chaouiya C; Naldi A; Thieffry D
    Methods Mol Biol; 2012; 804():463-79. PubMed ID: 22144167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HSM - a hybrid system based approach for modelling intracellular networks.
    Brazma A; Cerans K; Ruklisa D; Schlitt T; Viksna J
    Gene; 2013 Apr; 518(1):70-7. PubMed ID: 23266641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of bacteriophage lambda development by guanosine 5'-diphosphate-3'-diphosphate.
    Slomińska M; Neubauer P; Wegrzyn G
    Virology; 1999 Sep; 262(2):431-41. PubMed ID: 10502521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.