These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A fast modal wave-front sensor. Ribak E; Ebstein S Opt Express; 2001 Jul; 9(3):152-7. PubMed ID: 19421284 [TBL] [Abstract][Full Text] [Related]
7. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics. Nicolle M; Fusco T; Rousset G; Michau V Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491 [TBL] [Abstract][Full Text] [Related]
8. Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor. Nirmaier T; Pudasaini G; Bille J Opt Express; 2003 Oct; 11(21):2704-16. PubMed ID: 19471385 [TBL] [Abstract][Full Text] [Related]
10. Adaptive-optics correction of a stellar interferometer with a single pyramid wave-front sensor. Verinaud C; Esposito S Opt Lett; 2002 Apr; 27(7):470-2. PubMed ID: 18007834 [TBL] [Abstract][Full Text] [Related]
11. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment. Zhang Y; Yang D; Cui X Appl Opt; 2004 Feb; 43(4):729-34. PubMed ID: 14960062 [TBL] [Abstract][Full Text] [Related]
12. Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics. Dayton DC; Browne SL; Sandven SP; Gonglewski JD; Kudryashov AV Appl Opt; 1998 Aug; 37(24):5579-89. PubMed ID: 18286042 [TBL] [Abstract][Full Text] [Related]
13. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements. Li Z; Li X Opt Express; 2018 Apr; 26(9):11859-11876. PubMed ID: 29716103 [TBL] [Abstract][Full Text] [Related]
14. Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror. Zhu L; Sun PC; Bartsch DU; Freeman WR; Fainman Y Appl Opt; 1999 Oct; 38(28):6019-26. PubMed ID: 18324122 [TBL] [Abstract][Full Text] [Related]
15. Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation. Zhu L; Sun PC; Bartsch DU; Freeman WR; Fainman Y Appl Opt; 1999 Jan; 38(1):168-76. PubMed ID: 18305600 [TBL] [Abstract][Full Text] [Related]
16. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. Liang J; Grimm B; Goelz S; Bille JF J Opt Soc Am A Opt Image Sci Vis; 1994 Jul; 11(7):1949-57. PubMed ID: 8071736 [TBL] [Abstract][Full Text] [Related]
17. Interferometric hartmann wave-front sensing for active optics at the 6.5-m conversion of the multiple mirror telescope. West SC Appl Opt; 2002 Jul; 41(19):3781-9. PubMed ID: 12099583 [TBL] [Abstract][Full Text] [Related]
18. An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Mu Q; Cao Z; Hu L; Li D; Xuan L Opt Express; 2006 Sep; 14(18):8013-8. PubMed ID: 19529171 [TBL] [Abstract][Full Text] [Related]
19. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements. Paschall RN; Anderson DJ Appl Opt; 1993 Nov; 32(31):6347-58. PubMed ID: 20856471 [TBL] [Abstract][Full Text] [Related]
20. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor. Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]