BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 147638)

  • 1. Rapid isolation of chloride cells from pinfish gill.
    Hootman SR; Philpott CW
    Anat Rec; 1978 Mar; 190(3):687-702. PubMed ID: 147638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultracytochemical localization of Na+,K+-activated ATPase in chloride cells from the gills of a euryhaline teleost.
    Hootman SR; Philpott CW
    Anat Rec; 1979 Jan; 193(1):99-129. PubMed ID: 216285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport.
    Silva P; Solomon R; Spokes K; Epstein F
    J Exp Zool; 1977 Mar; 199(3):419-26. PubMed ID: 139454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental and environmental regulation of chloride cells in young American shad, Alosa sapidissima.
    Zydlewski J; McCormick SD
    J Exp Zool; 2001 Jul; 290(2):73-87. PubMed ID: 11471137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the levels of chloride cells and (Na+ + K+)-dependent ATPase in the gills of yellow and silver eels adapting to seawater.
    Thomson AJ; Sargent JR
    J Exp Zool; 1977 Apr; 200(1):33-40. PubMed ID: 140205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis).
    Tipsmark CK; Madsen SS; Borski RJ
    J Exp Zool A Comp Exp Biol; 2004 Dec; 301(12):979-91. PubMed ID: 15562450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accessory cells in teleost branchial epithelium.
    Hootman SR; Philpott CW
    Am J Physiol; 1980 Mar; 238(3):R199-206. PubMed ID: 7369392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell signaling and ion transport across the fish gill epithelium.
    Evans DH
    J Exp Zool; 2002 Aug; 293(3):336-47. PubMed ID: 12115905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater.
    Varsamos S; Diaz JP; Charmantier G; Flik G; Blasco C; Connes R
    J Exp Zool; 2002 Jun; 293(1):12-26. PubMed ID: 12115915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thyroid status alters gill ionic metabolism and chloride cell morphology as evidenced by scanning electron microscopy in a teleost Anabas testudineus (Bloch): short and long term in vivo study.
    Sreejith P; Beyo RS; Prasad G; Sunny F; Oommen OV
    Indian J Exp Biol; 2007 Dec; 45(12):1015-21. PubMed ID: 18254206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels.
    Tse WK; Au DW; Wong CK
    Biochem Biophys Res Commun; 2006 Aug; 346(4):1181-90. PubMed ID: 16793006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural features of chloride cells in the gill epithelium of the Atlantic salmon, Salmo salar, and their modifications during smoltification.
    Pisam M; Prunet P; Boeuf G; Rambourg A
    Am J Anat; 1988 Nov; 183(3):235-44. PubMed ID: 3213829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of cortisol receptor in branchial chloride cells in chum salmon fry.
    Uchida K; Kaneko T; Tagawa M; Hirano T
    Gen Comp Endocrinol; 1998 Feb; 109(2):175-85. PubMed ID: 9473362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na,K-ATPase and chloride cell fine structure to various high salinity environments.
    Karnaky KJ; Ernst SA; Philpott CW
    J Cell Biol; 1976 Jul; 70(1):144-56. PubMed ID: 132450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prolactin and growth hormone on strategies of hypoosmotic adaptation in a marine teleost, Sparus sarba.
    Kelly SP; Chow IN; Woo NY
    Gen Comp Endocrinol; 1999 Jan; 113(1):9-22. PubMed ID: 9882539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus.
    Laiz-Carrión R; Guerreiro PM; Fuentes J; Canario AV; Martín Del Río MP; Mancera JM
    J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):563-76. PubMed ID: 15945079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolactin gene expression and gill chloride cell activity in fugu Takifugu rubripes exposed to a hypoosmotic environment.
    Lee KM; Kaneko T; Katoh F; Aida K
    Gen Comp Endocrinol; 2006 Dec; 149(3):285-93. PubMed ID: 16884723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface ultrastructure of the gill arch of the killifish, Fundulus heteroclitus, from seawater and freshwater, with special reference to the morphology of apical crypts of chloride cells.
    Hossler FE; Musil G; Karnaky KJ; Epstein FH
    J Morphol; 1985 Sep; 185(3):377-86. PubMed ID: 4057266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of osmotic stress on the chloride and mucous cells in the gill epithelium of the fresh-water teleost Barbus filamentosus (Cypriniformes, Pisces). A structural and histochemical study.
    Zaccone G
    Acta Histochem; 1981; 68(2):147-59. PubMed ID: 6168155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gill ultrastructure of the Pacific hagfish Eptatretus stouti.
    Mallatt J; Paulsen C
    Am J Anat; 1986 Oct; 177(2):243-69. PubMed ID: 3788822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.