These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 14763818)

  • 1. Cellulose and glass fiber affinity membranes for the chromatographic separation of biomolecules.
    Ruckenstein E; Guo W
    Biotechnol Prog; 2004; 20(1):13-25. PubMed ID: 14763818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosslinked glass fiber affinity membrane chromatography and its application to fibronectin separation.
    Guo W; Ruckenstein E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Sep; 795(1):61-72. PubMed ID: 12957170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreactive cellulose membrane--A novel matrix for covalent immobilization of biomolecules.
    Bora U; Sharma P; Kannan K; Nahar P
    J Biotechnol; 2006 Nov; 126(2):220-9. PubMed ID: 16716429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification.
    Boto RE; Almeida P; Queiroz JA
    Biomed Chromatogr; 2008 Mar; 22(3):278-88. PubMed ID: 17939169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline treatment of the cellulose fiber affecting membrane column behaviour for high-performance immunoaffinity chromatography.
    Zhou D; Zou H; Wang H; Ni J; Zhang Q; Zhang Y
    Biomed Chromatogr; 2000 Dec; 14(8):511-5. PubMed ID: 11113934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability.
    Chen GJ; Kuo CH; Chen CI; Yu CC; Shieh CJ; Liu YC
    J Biosci Bioeng; 2012 Feb; 113(2):166-72. PubMed ID: 22071144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoimmobilization of unmodified carbohydrates on activated surface.
    Sharma P; Basir SF; Nahar P
    J Colloid Interface Sci; 2010 Feb; 342(1):202-4. PubMed ID: 19914627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of polysulfone affinity membranes bearing a synthetic peptide ligand for the separation of murine immunoglobulins.
    Boi C; Algeri C; Sarti GC
    Biotechnol Prog; 2008; 24(6):1304-13. PubMed ID: 19194945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of endotoxin from aqueous solutions by affinity membrane.
    Guo W; Shang Z; Yu Y; Zhou L
    Biomed Chromatogr; 1997; 11(3):164-6. PubMed ID: 9192110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cellulose acetate micropore membrane immobilized acylase I.
    Guo YS; Wang J; Song XJ
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1608-12. PubMed ID: 15547972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new matrix for affinity chromatography and its application in the separation of a human monoclonal antibody.
    Guo W; Shang Z; Yu Y; Zhou L
    Biomed Chromatogr; 1994; 8(3):142-4. PubMed ID: 8075524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of dye-ligand affinity chromatographic packings based on monodisperse poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their chromatographic properties.
    Wu F; Zhu Y; Jia Z
    J Chromatogr A; 2006 Nov; 1134(1-2):45-50. PubMed ID: 17034800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding ligand-protein interactions in affinity membrane chromatography for antibody purification.
    Boi C; Busini V; Salvalaglio M; Cavallotti C; Sarti GC
    J Chromatogr A; 2009 Dec; 1216(50):8687-96. PubMed ID: 19535082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity studies of immobilized subtilisin on functionalized pure cellulose-based membranes.
    Liu J; Wang J; Bachas LG; Bhattacharyya D
    Biotechnol Prog; 2001; 17(5):866-71. PubMed ID: 11587576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane affinity chromatography used for the separation of trypsin inhibitor.
    Guo W; Shang Z; Yu Y; Guan Y; Zhou L
    Biomed Chromatogr; 1992; 6(2):95-8. PubMed ID: 1638098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pore structure and architecture of photo-grafted functional layers on separation performance of cellulose-based macroporous membrane adsorbers.
    Wang J; Faber R; Ulbricht M
    J Chromatogr A; 2009 Sep; 1216(37):6490-501. PubMed ID: 19665716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification.
    Arica MY; Yilmaz M; Yalçin E; Bayramoğlu G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jun; 805(2):315-23. PubMed ID: 15135107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity chromatography using biocompatible and reusable biotinylated membranes.
    Govender S; Jacobs EP; Bredenkamp MW; Swart P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Nov; 859(1):1-8. PubMed ID: 17875407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.
    Boto RE; Anyanwu U; Sousa F; Almeida P; Queiroz JA
    Biomed Chromatogr; 2009 Sep; 23(9):987-93. PubMed ID: 19347966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of adsorption conditions of papain on dye affinity membrane using response surface methodology.
    Su SN; Nie HL; Zhu LM; Chen TX
    Bioresour Technol; 2009 Apr; 100(8):2336-40. PubMed ID: 19128959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.