These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 14763825)
1. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media. López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation. Pernas MA; López C; Pastrana L; Rúa ML J Biotechnol; 2001 Nov; 84(2):163-74. PubMed ID: 11090688 [TBL] [Abstract][Full Text] [Related]
3. Recombinant Candida rugosa lipase 2 from Pichia pastoris: immobilization and use as biocatalyst in a stereoselective reaction. Benaiges MD; Alarcón M; Fuciños P; Ferrer P; Rua M; Valero F Biotechnol Prog; 2010; 26(5):1252-8. PubMed ID: 20945483 [TBL] [Abstract][Full Text] [Related]
4. Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes. Pernas MA; López C; Rúa ML; Hermoso J FEBS Lett; 2001 Jul; 501(1):87-91. PubMed ID: 11457462 [TBL] [Abstract][Full Text] [Related]
5. Rational strategy for the production of new crude lipases from Candida rugosa. de María PD; Sánchez-Montero JM; Alcántara AR; Valero F; Sinisterra JV Biotechnol Lett; 2005 Apr; 27(7):499-503. PubMed ID: 15928857 [TBL] [Abstract][Full Text] [Related]
6. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme. Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Aug; 54(16):5831-8. PubMed ID: 16881684 [TBL] [Abstract][Full Text] [Related]
7. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
8. Protein-Coated Microcrystals from Candida rugosa Lipase: Its Immobilization, Characterization, and Application in Resolution of Racemic Ibuprofen. Huang S; Li X; Xu L; Ke C; Zhang R; Yan Y Appl Biochem Biotechnol; 2015 Sep; 177(1):36-47. PubMed ID: 26137875 [TBL] [Abstract][Full Text] [Related]
9. Understanding Candida rugosa lipases: an overview. Domínguez de María P; Sánchez-Montero JM; Sinisterra JV; Alcántara AR Biotechnol Adv; 2006; 24(2):180-96. PubMed ID: 16288844 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester. Zhu S; Wu Y; Yu Z J Biotechnol; 2005 Apr; 116(4):397-401. PubMed ID: 15748766 [TBL] [Abstract][Full Text] [Related]
11. Site-specific saturation mutagenesis on residues 132 and 450 of Candida rugosa LIP2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters. Yen CC; Malmis CC; Lee GC; Lee LC; Shaw JF J Agric Food Chem; 2010 Oct; 58(20):10899-905. PubMed ID: 20873770 [TBL] [Abstract][Full Text] [Related]
12. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Temoçin Z J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345 [TBL] [Abstract][Full Text] [Related]
13. Screening of lipase carriers for reactions in water, biphasic and pure organic solvent systems. Hrydziuszko Z; Dmytryk A; Majewska P; Szymańska K; Liesiene J; Jarzębski A; Bryjak J Acta Biochim Pol; 2014; 61(1):1-6. PubMed ID: 24644546 [TBL] [Abstract][Full Text] [Related]
14. Enantioselective synthesis of (S)-ibuprofen ester prodrug in cyclohexane by Candida rugosa lipase immobilized on Accurel MP1000. Chen JC; Tsai SW Biotechnol Prog; 2000; 16(6):986-92. PubMed ID: 11101325 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes. Chang SW; Huang M; Hsieh YH; Luo YT; Wu TT; Tsai CW; Chen CS; Shaw JF Food Chem; 2014 Jul; 155():140-5. PubMed ID: 24594166 [TBL] [Abstract][Full Text] [Related]
16. Conformation and catalytic properties studies of Candida rugosa Lip7 via enantioselective esterification of ibuprofen in organic solvents and ionic liquids. Li X; Huang S; Xu L; Yan Y ScientificWorldJournal; 2013; 2013():364730. PubMed ID: 24381516 [TBL] [Abstract][Full Text] [Related]
17. Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Hongwei Y; Jinchuan W; Chi Bun C Chirality; 2005 Jan; 17(1):16-21. PubMed ID: 15515047 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of Candida rugosa lipase for resolution of racimic ibuprofen. Ghofrani S; Allameh A; Yaghmaei P; Norouzian D Daru; 2021 Jun; 29(1):117-123. PubMed ID: 33528796 [TBL] [Abstract][Full Text] [Related]
19. Unexpected reaction profile observed in the synthesis of propyl laurate when using Candida rugosa lipases immobilized in microemulsions based organogels. Domínguez de María P; Xenakis A; Stamatis H; Sinisterra JV Biotechnol Lett; 2004 Oct; 26(19):1517-20. PubMed ID: 15604790 [TBL] [Abstract][Full Text] [Related]
20. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. Ozyilmaz E; Ascioglu S; Yilmaz M Int J Biol Macromol; 2021 Apr; 175():79-86. PubMed ID: 33548316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]