BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14763834)

  • 1. Ability of different biomaterials to enantioselectively catalyze oxidation and reduction reactions.
    Nagaoka H
    Biotechnol Prog; 2004; 20(1):128-33. PubMed ID: 14763834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral resolution function with immobilized food proteins.
    Nagaoka H
    Biotechnol Prog; 2003; 19(4):1149-55. PubMed ID: 12892475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of 3,4-cis-[3H]leucocyanidin and enzymatic reduction to catechin.
    Tanner GJ; Kristiansen KN
    Anal Biochem; 1993 Mar; 209(2):274-7. PubMed ID: 8470799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and theoretical comprehension of diverse rate laws and reactivity gaps in Coriolus hirsutus laccase-catalyzed oxidation of acido and cyclometalated Ru(II) complexes.
    Kurzeev SA; Vilesov AS; Fedorova TV; Stepanova EV; Koroleva OV; Bukh C; Bjerrum MJ; Kurnikov IV; Ryabov AD
    Biochemistry; 2009 Jun; 48(21):4519-27. PubMed ID: 19351176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative kinetics and mechanism of oxygen and sulfur atom transfer reactions mediated by bis(dithiolene) complexes of molybdenum and tungsten.
    Wang JJ; Kryatova OP; Rybak-Akimova EV; Holm RH
    Inorg Chem; 2004 Dec; 43(25):8092-101. PubMed ID: 15578849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral inversion of RS-8359: a selective and reversible MAO-A inhibitor via oxido-reduction of keto-alcohol.
    Itoh K; Hoshino K; Endo A; Asakawa T; Yamakami K; Noji C; Kosaka T; Tanaka Y
    Chirality; 2006 Sep; 18(9):698-706. PubMed ID: 16823812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostable NAD+-dependent (R)-specific secondary alcohol dehydrogenase from cholesterol-utilizing Burkholderia sp. AIU 652.
    Isobe K; Wakao N
    J Biosci Bioeng; 2003; 96(4):387-93. PubMed ID: 16233542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the physiological interconversion of 5alpha-DHT and 3alpha-diol by rat 3alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis.
    Heredia VV; Penning TM
    Biochemistry; 2004 Sep; 43(38):12028-37. PubMed ID: 15379543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electrophoretic analysis of substrate specificity of wheat alcohol dehydrogenases].
    Iaaska VKh; Iaaska BE
    Biokhimiia; 1978 Nov; 43(11):2011-5. PubMed ID: 32921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols--part I: processes with isolated enzymes.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):237-48. PubMed ID: 17516064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adzuki bean: a new resource of biocatalyst for asymmetric reduction of aromatic ketones with high stereoselectivity and substrate tolerance.
    Xie Y; Xu JH; Lu WY; Lin GQ
    Bioresour Technol; 2009 May; 100(9):2463-8. PubMed ID: 19153040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dialkoxyphosphinyl-substituted enols of carboxamides.
    Song J; Yamataka H; Rappoport Z
    J Org Chem; 2007 Sep; 72(20):7605-24. PubMed ID: 17760461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic approach to the quantitative voltammetric analysis of the FeIII/FeII component of the [alpha2-Fe(OH2)P2W17O61]7-/8- reduction process in buffered and unbuffered aqueous media.
    Guo SX; Feldberg SW; Bond AM; Callahan DL; Richardt PJ; Wedd AG
    J Phys Chem B; 2005 Nov; 109(43):20641-51. PubMed ID: 16853672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus.
    Musa MM; Ziegelmann-Fjeld KI; Vieille C; Zeikus JG; Phillips RS
    J Org Chem; 2007 Jan; 72(1):30-4. PubMed ID: 17194078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of aeration during cell growth on ketone reactions by immobilized yeast.
    Gervais TR; Carta G; Gainer JL
    Biotechnol Prog; 2000; 16(2):208-12. PubMed ID: 10753445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stereoselectivity and catalytic properties of Xanthobacter autotrophicus 2-[(R)-2-Hydroxypropylthio]ethanesulfonate dehydrogenase are controlled by interactions between C-terminal arginine residues and the sulfonate of coenzyme M.
    Clark DD; Boyd JM; Ensign SA
    Biochemistry; 2004 Jun; 43(21):6763-71. PubMed ID: 15157110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and structures of oxovanadium(V) complexes of Schiff bases of beta-amino alcohols as tunable catalysts for the asymmetric oxidation of organic sulfides and asymmetric alkynylation of aldehydes.
    Hsieh SH; Kuo YP; Gau HM
    Dalton Trans; 2007 Jan; (1):97-106. PubMed ID: 17160179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):249-55. PubMed ID: 17486338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric ketone reduction with immobilized yeast in hexane: biocatalyst deactivation and regeneration.
    Griffin DR; Gainer JL; Carta G
    Biotechnol Prog; 2001; 17(2):304-10. PubMed ID: 11312708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541.
    Stampfer W; Kosjek B; Faber K; Kroutil W
    J Org Chem; 2003 Jan; 68(2):402-6. PubMed ID: 12530865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.