These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1476393)

  • 21. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering.
    Bocanegra JA; Scrutton NS; Perham RN
    Biochemistry; 1993 Mar; 32(11):2737-40. PubMed ID: 8457541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of doubly wound nucleotide binding topologies using automated loop searches.
    Swindells MB
    Protein Sci; 1993 Dec; 2(12):2146-53. PubMed ID: 8298462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural studies of malate dehydrogenases (MDHs): MDHs in Brevundimonas species are the first reported MDHs in Proteobacteria which resemble lactate dehydrogenases in primary structure.
    Charnock C
    J Bacteriol; 1997 Jun; 179(12):4066-70. PubMed ID: 9190829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Insights into Malic Enzyme Variants Favoring an Unnatural Redox Cofactor.
    Liu Y; Guo X; Liu W; Wang J; Kent Zhao Z
    Chembiochem; 2021 May; 22(10):1765-1768. PubMed ID: 33523590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase.
    Prachayasittikul V; Ljung S; Isarankura-Na-Ayudhya C; Bülow L
    Int J Biol Sci; 2006; 2(1):10-6. PubMed ID: 16585948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A unique homodimeric NAD⁺-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus tauri.
    Tang WG; Song P; Cao ZY; Wang P; Zhu GP
    FASEB J; 2015 Jun; 29(6):2462-72. PubMed ID: 25724193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a domain-locking disulfide into a bacterial malate dehydrogenase produces a redox-sensitive enzyme.
    Muslin EH; Li D; Stevens FJ; Donnelly M; Schiffer M; Anderson LE
    Biophys J; 1995 Jun; 68(6):2218-23. PubMed ID: 7647229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Liu JH; Fang YW; Hung HC
    Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional role of fumarate site Glu59 involved in allosteric regulation and subunit-subunit interaction of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Chiang YH; Chang KY; Hung HC
    FEBS J; 2009 Feb; 276(4):983-94. PubMed ID: 19141113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model of Plasmodium falciparum lactate dehydrogenase and its implications for the design of improved antimalarials and the enhanced detection of parasitaemia.
    Sessions RB; Dewar V; Clarke AR; Holbrook JJ
    Protein Eng; 1997 Apr; 10(4):301-6. PubMed ID: 9194154
    [No Abstract]   [Full Text] [Related]  

  • 31. Molecular basis of allosteric activation of bacterial L-lactate dehydrogenase.
    Iwata S; Ohta T
    J Mol Biol; 1993 Mar; 230(1):21-7. PubMed ID: 8450537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guided evolution of enzymes with new substrate specificities.
    el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ
    J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and synthesis of new enzymes based on the lactate dehydrogenase framework.
    Dunn CR; Wilks HM; Halsall DJ; Atkinson T; Clarke AR; Muirhead H; Holbrook JJ
    Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):177-84. PubMed ID: 1678537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knowledge-based modeling of the D-lactate dehydrogenase three-dimensional structure.
    Vinals C; De Bolle X; Depiereux E; Feytmans E
    Proteins; 1995 Apr; 21(4):307-18. PubMed ID: 7567953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil.
    Kawakami R; Sakuraba H; Ohshima T
    J Bacteriol; 2007 Aug; 189(15):5626-33. PubMed ID: 17526698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamate dehydrogenase of Halobacterium salinarum: evidence that the gene sequence currently assigned to the NADP+-dependent enzyme is in fact that of the NAD+-dependent glutamate dehydrogenase.
    Hayden BM; Bonete MJ; Brown PE; Moir AJ; Engel PC
    FEMS Microbiol Lett; 2002 May; 211(1):37-41. PubMed ID: 12052548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed evolution of thermotolerant malic enzyme for improved malate production.
    Morimoto Y; Honda K; Ye X; Okano K; Ohtake H
    J Biosci Bioeng; 2014 Feb; 117(2):147-152. PubMed ID: 23932397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme.
    Feeney R; Clarke AR; Holbrook JJ
    Biochem Biophys Res Commun; 1990 Jan; 166(2):667-72. PubMed ID: 2302233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in the oligomeric states of the LDH-like L-MalDH from the hyperthermophilic archaea Methanococcus jannaschii and Archaeoglobus fulgidus.
    Madern D; Ebel C; Dale HA; Lien T; Steen IH; Birkeland NK; Zaccai G
    Biochemistry; 2001 Aug; 40(34):10310-6. PubMed ID: 11513609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the functional role of allosteric site residue Asp102 in the regulatory mechanism of human mitochondrial NAD(P)+-dependent malate dehydrogenase (malic enzyme).
    Hung HC; Kuo MW; Chang GG; Liu GY
    Biochem J; 2005 Nov; 392(Pt 1):39-45. PubMed ID: 15989682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.