These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 14763982)

  • 1. MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis.
    Kock H; Gerth U; Hecker M
    Mol Microbiol; 2004 Feb; 51(4):1087-102. PubMed ID: 14763982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor.
    Krüger E; Zühlke D; Witt E; Ludwig H; Hecker M
    EMBO J; 2001 Feb; 20(4):852-63. PubMed ID: 11179229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique degradation signal for ClpCP in Bacillus subtilis.
    Pan Q; Losick R
    J Bacteriol; 2003 Sep; 185(17):5275-8. PubMed ID: 12923101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance.
    Gerth U; Krüger E; Derré I; Msadek T; Hecker M
    Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MurAA is required for intrinsic cephalosporin resistance of Enterococcus faecalis.
    Vesić D; Kristich CJ
    Antimicrob Agents Chemother; 2012 May; 56(5):2443-51. PubMed ID: 22290954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis.
    Kock H; Gerth U; Hecker M
    J Bacteriol; 2004 Sep; 186(17):5856-64. PubMed ID: 15317791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis.
    Molière N; Turgay K
    Res Microbiol; 2009 Nov; 160(9):637-44. PubMed ID: 19781636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C.
    Derré I; Rapoport G; Msadek T
    Mol Microbiol; 2000 Oct; 38(2):335-47. PubMed ID: 11069659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro.
    Laskowska E; Kuczyńska-Wiśnik D; Skórko-Glonek J; Taylor A
    Mol Microbiol; 1996 Nov; 22(3):555-71. PubMed ID: 8939438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of general and regulatory proteolysis in Bacillus subtilis cells.
    Kirstein J; Strahl H; Molière N; Hamoen LW; Turgay K
    Mol Microbiol; 2008 Nov; 70(3):682-94. PubMed ID: 18786145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Novel Spx Regulatory Pathways in Bacillus subtilis Uncovers a Close Relationship between the CtsR and Spx Regulons.
    Rojas-Tapias DF; Helmann JD
    J Bacteriol; 2019 Jul; 201(13):. PubMed ID: 30962353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis.
    Nakano S; Zheng G; Nakano MM; Zuber P
    J Bacteriol; 2002 Jul; 184(13):3664-70. PubMed ID: 12057962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular determinants of MecA as a degradation tag for the ClpCP protease.
    Mei Z; Wang F; Qi Y; Zhou Z; Hu Q; Li H; Wu J; Shi Y
    J Biol Chem; 2009 Dec; 284(49):34366-75. PubMed ID: 19767395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation.
    Msadek T; Dartois V; Kunst F; Herbaud ML; Denizot F; Rapoport G
    Mol Microbiol; 1998 Mar; 27(5):899-914. PubMed ID: 9535081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis.
    Nakano MM; Hajarizadeh F; Zhu Y; Zuber P
    Mol Microbiol; 2001 Oct; 42(2):383-94. PubMed ID: 11703662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-tuning in regulation of Clp protein content in Bacillus subtilis.
    Gerth U; Kirstein J; Mostertz J; Waldminghaus T; Miethke M; Kock H; Hecker M
    J Bacteriol; 2004 Jan; 186(1):179-91. PubMed ID: 14679237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis.
    Gerth U; Kock H; Kusters I; Michalik S; Switzer RL; Hecker M
    J Bacteriol; 2008 Jan; 190(1):321-31. PubMed ID: 17981983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes.
    Krüger E; Hecker M
    J Bacteriol; 1998 Dec; 180(24):6681-8. PubMed ID: 9852015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression.
    Varmanen P; Ingmer H; Vogensen FK
    Microbiology (Reading); 2000 Jun; 146 ( Pt 6)():1447-1455. PubMed ID: 10846223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria.
    Derré I; Rapoport G; Msadek T
    Mol Microbiol; 1999 Jan; 31(1):117-31. PubMed ID: 9987115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.