These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 14764097)

  • 1. Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha.
    van der Linden E; Faber BW; Bleijlevens B; Burgdorf T; Bernhard M; Friedrich B; Albracht SP
    Eur J Biochem; 2004 Feb; 271(4):801-8. PubMed ID: 14764097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha.
    Lauterbach L; Idris Z; Vincent KA; Lenz O
    PLoS One; 2011; 6(10):e25939. PubMed ID: 22016788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha.
    Porthun A; Bernhard M; Friedrich B
    Arch Microbiol; 2002 Feb; 177(2):159-66. PubMed ID: 11807565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H
    Preissler J; Wahlefeld S; Lorent C; Teutloff C; Horch M; Lauterbach L; Cramer SP; Zebger I; Lenz O
    Biochim Biophys Acta Bioenerg; 2018 Jan; 1859(1):8-18. PubMed ID: 28970007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a reverse micelle system for study of oligomeric structure of NAD+-reducing hydrogenase from Ralstonia eutropha H16.
    Tikhonova TV; Kurkin SA; Klyachko NL; Popov VO
    Biochemistry (Mosc); 2005 Jun; 70(6):645-51. PubMed ID: 16038606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties.
    van der Linden E; Burgdorf T; de Lacey AL; Buhrke T; Scholte M; Fernandez VM; Friedrich B; Albracht SP
    J Biol Inorg Chem; 2006 Mar; 11(2):247-60. PubMed ID: 16418856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH.
    Burgdorf T; van der Linden E; Bernhard M; Yin QY; Back JW; Hartog AF; Muijsers AO; de Koster CG; Albracht SP; Friedrich B
    J Bacteriol; 2005 May; 187(9):3122-32. PubMed ID: 15838039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen.
    Van der Linden E; Burgdorf T; Bernhard M; Bleijlevens B; Friedrich B; Albracht SP
    J Biol Inorg Chem; 2004 Jul; 9(5):616-26. PubMed ID: 15164270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Site of the NAD(+)-Reducing Hydrogenase from Ralstonia eutropha Studied by EPR Spectroscopy.
    Löwenstein J; Lauterbach L; Teutloff C; Lenz O; Bittl R
    J Phys Chem B; 2015 Oct; 119(43):13834-41. PubMed ID: 26214595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1b.
    Schneider K; Cammack R; Schlegel HG
    Eur J Biochem; 1984 Jul; 142(1):75-84. PubMed ID: 6086343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discriminating changes in intracellular NADH/NAD
    Wilkening S; Schmitt FJ; Lenz O; Zebger I; Horch M; Friedrich T
    Biochim Biophys Acta Bioenerg; 2019 Oct; 1860(10):148062. PubMed ID: 31419395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2.
    Lauterbach L; Lenz O
    J Am Chem Soc; 2013 Nov; 135(47):17897-905. PubMed ID: 24180286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from Ralstonia eutropha detected by X-ray absorption, EPR, and FTIR spectroscopy.
    Burgdorf T; Löscher S; Liebisch P; Van der Linden E; Galander M; Lendzian F; Meyer-Klaucke W; Albracht SP; Friedrich B; Dau H; Haumann M
    J Am Chem Soc; 2005 Jan; 127(2):576-92. PubMed ID: 15643882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha.
    Burgdorf T; De Lacey AL; Friedrich B
    J Bacteriol; 2002 Nov; 184(22):6280-8. PubMed ID: 12399498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of catalytically essential functional groups of NAD-dependent hydrogenase from Ralstonia eutropha H16.
    Tikhonova TV; Savel'eva ND; Popov VO
    Biochemistry (Mosc); 2003 Sep; 68(9):994-1001. PubMed ID: 14606942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenase encapsulation into red blood cells and regeneration of electron acceptor.
    Axley MJ; Dad LK; Harabin AL
    Biotechnol Appl Biochem; 1996 Oct; 24(2):95-100. PubMed ID: 8865603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the NADH/NAD
    Tejwani V; Schmitt FJ; Wilkening S; Zebger I; Horch M; Lenz O; Friedrich T
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):86-94. PubMed ID: 27816420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase.
    Karstens K; Wahlefeld S; Horch M; Grunzel M; Lauterbach L; Lendzian F; Zebger I; Lenz O
    Biochemistry; 2015 Jan; 54(2):389-403. PubMed ID: 25517969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16.
    Schneider K; Schlegel HG
    Biochim Biophys Acta; 1976 Nov; 452(1):66-80. PubMed ID: 186126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible active site sulfoxygenation can explain the oxygen tolerance of a NAD+-reducing [NiFe] hydrogenase and its unusual infrared spectroscopic properties.
    Horch M; Lauterbach L; Mroginski MA; Hildebrandt P; Lenz O; Zebger I
    J Am Chem Soc; 2015 Feb; 137(7):2555-64. PubMed ID: 25647259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.