BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 14764640)

  • 41. Hematologic effects of a novel hemoglobin-based oxygen carrier in normal male and female subjects.
    Hughes GS; Francome SF; Antal EJ; Adams WJ; Locker PK; Yancey EP; Jacobs EE
    J Lab Clin Med; 1995 Nov; 126(5):444-51. PubMed ID: 7595029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hemoglobin substitutes.
    Anbari KK; Garino JP; Mackenzie CF
    Eur Spine J; 2004 Oct; 13 Suppl 1(Suppl 1):S76-82. PubMed ID: 15168238
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of hemoglobin glutamer-250 (bovine) (HBOC-201, Hemopure) on coagulation testing.
    Jahr JS; Lurie F; Gosselin R; Lin JS; Wong L; Owings JT; Larkin E
    Am J Ther; 2002; 9(5):431-6. PubMed ID: 12237736
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally.
    Meng F; Kassa T; Jana S; Wood F; Zhang X; Jia Y; D'Agnillo F; Alayash AI
    Bioconjug Chem; 2018 May; 29(5):1560-1575. PubMed ID: 29570272
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxygen therapeutics--current concepts.
    Hill SE
    Can J Anaesth; 2001 Apr; 48(4 Suppl):S32-40. PubMed ID: 11336435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antioxidant effects of vitamin C on hemoglobin-based oxygen carriers derived from human cord blood.
    Chen G; Duan Y; Liu J; Wang H; Yang C
    Artif Cells Nanomed Biotechnol; 2016; 44(1):56-61. PubMed ID: 26671172
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Blood substitutes as pharmacotherapies in clinical practice.
    Jahr JS; Walker V; Manoochehri K
    Curr Opin Anaesthesiol; 2007 Aug; 20(4):325-30. PubMed ID: 17620840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Confirmation and quantification of hemoglobin-based oxygen carriers in equine and human plasma by hyphenated liquid chromatography tandem mass spectrometry.
    Guan F; Uboh CE; Soma LR; Luo Y; Jahr JS; Driessen B
    Anal Chem; 2004 Sep; 76(17):5127-35. PubMed ID: 15373452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Examples of doping control analysis by liquid chromatography-tandem mass spectrometry: ephedrines, beta-receptor blocking agents, diuretics, sympathomimetics, and cross-linked hemoglobins.
    Thevis M; Schänzer W
    J Chromatogr Sci; 2005 Jan; 43(1):22-31. PubMed ID: 15808003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PEGylation promotes hemoglobin tetramer dissociation.
    Caccia D; Ronda L; Frassi R; Perrella M; Del Favero E; Bruno S; Pioselli B; Abbruzzetti S; Viappiani C; Mozzarelli A
    Bioconjug Chem; 2009 Jul; 20(7):1356-66. PubMed ID: 19534518
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fetal oxygen content is restored after maternal hemorrhage and fluid replacement with polymerized bovine hemoglobin, but not with hetastarch, in pregnant sheep.
    Moon PF; Bliss SP; Posner LP; Erb HN; Nathanielsz PW
    Anesth Analg; 2001 Jul; 93(1):142-50. PubMed ID: 11429355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methods for detection and confirmation of Hematide™/peginesatide in anti-doping samples.
    Leuenberger N; Saugy J; Mortensen RB; Schatz PJ; Giraud S; Saugy M
    Forensic Sci Int; 2011 Dec; 213(1-3):15-9. PubMed ID: 21816551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applications and biomonitoring issues of recombinant erythropoietins for doping control.
    Tsitsimpikou C; Kouretas D; Tsarouhas K; Fitch K; Spandidos DA; Tsatsakis A
    Ther Drug Monit; 2011 Feb; 33(1):3-13. PubMed ID: 21099742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Specific screening method for dextran and hydroxyethyl starch in human urine by size exclusion chromatography-in-source collision-induced dissociation-time-of-flight mass spectrometry.
    Kolmonen M; Leinonen A; Kuuranne T; Pelander A; Deventer K; Ojanperä I
    Anal Bioanal Chem; 2011 Aug; 401(2):563-71. PubMed ID: 21416163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers.
    Chen JY; Scerbo M; Kramer G
    Clinics (Sao Paulo); 2009; 64(8):803-13. PubMed ID: 19690667
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resuscitation with a hemoglobin-based oxygen carrier after traumatic brain injury.
    King DR; Cohn SM; Proctor KG
    J Trauma; 2005 Sep; 59(3):553-60; discussion 560-2. PubMed ID: 16361895
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Does OxyVita, a new-generation hemoglobin-based oxygen carrier, or oxyglobin acutely interfere with coagulation compared with normal saline or 6% hetastarch? An ex vivo thromboelastography study.
    Jahr JS; Weeks DL; Desai P; Lim JC; Butch AW; Gunther R; Driessen B
    J Cardiothorac Vasc Anesth; 2008 Feb; 22(1):34-9. PubMed ID: 18249328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Setbacks in blood substitutes research and development: a biochemical perspective.
    Alayash AI
    Clin Lab Med; 2010 Jun; 30(2):381-9. PubMed ID: 20513557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeted O2 delivery by blood substitutes: in vitro arteriolar simulations of first- and second-generation products.
    Cole R; Vandegriff K; Szeri A; Savas O; Winslow R
    Microvasc Res; 2008 Nov; 76(3):169-79. PubMed ID: 18671987
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Oxygen blood transport and doping].
    Audran M; Connes P; Varlet-Marie E
    Bull Acad Natl Med; 2003; 187(9):1669-79; discussion 1680-3. PubMed ID: 15369237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.