BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 14764650)

  • 1. Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation.
    Metzger JM; Westfall MV
    Circ Res; 2004 Feb; 94(2):146-58. PubMed ID: 14764650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function.
    Brown JH; Cohen C
    Adv Protein Chem; 2005; 71():121-59. PubMed ID: 16230111
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphoproteome analysis of cardiomyocytes subjected to beta-adrenergic stimulation: identification and characterization of a cardiac heat shock protein p20.
    Chu G; Egnaczyk GF; Zhao W; Jo SH; Fan GC; Maggio JE; Xiao RP; Kranias EG
    Circ Res; 2004 Feb; 94(2):184-93. PubMed ID: 14615292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of tropomyosin in the regulation of myocardial contraction and relaxation.
    Wolska BM; Wieczorek DM
    Pflugers Arch; 2003 Apr; 446(1):1-8. PubMed ID: 12690456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of cardiac contractile function by troponin I phosphorylation.
    Layland J; Solaro RJ; Shah AM
    Cardiovasc Res; 2005 Apr; 66(1):12-21. PubMed ID: 15769444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs.
    Krüger M; Kötter S; Grützner A; Lang P; Andresen C; Redfield MM; Butt E; dos Remedios CG; Linke WA
    Circ Res; 2009 Jan; 104(1):87-94. PubMed ID: 19023132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional and posttranslational modifications of titin: implications for diastole.
    Borbély A; van Heerebeek L; Paulus WJ
    Circ Res; 2009 Jan; 104(1):12-4. PubMed ID: 19118283
    [No Abstract]   [Full Text] [Related]  

  • 8. The role of troponins in muscle contraction.
    Gomes AV; Potter JD; Szczesna-Cordary D
    IUBMB Life; 2002 Dec; 54(6):323-33. PubMed ID: 12665242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of protein kinase C in thin filament activation by rigor-like cross-bridges under ischemic conditions.
    Morimoto S
    J Mol Cell Cardiol; 2009 Sep; 47(3):350-1. PubMed ID: 19540843
    [No Abstract]   [Full Text] [Related]  

  • 10. Modulation of thin filament activation by breakdown or isoform switching of thin filament proteins: physiological and pathological implications.
    Marston SB; Redwood CS
    Circ Res; 2003 Dec; 93(12):1170-8. PubMed ID: 14670832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length and protein kinase A modulations of myocytes in cardiac myosin binding protein C-deficient mice.
    Cazorla O; Szilagyi S; Vignier N; Salazar G; Krämer E; Vassort G; Carrier L; Lacampagne A
    Cardiovasc Res; 2006 Feb; 69(2):370-80. PubMed ID: 16380103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural based insights into the role of troponin in cardiac muscle pathophysiology.
    Li MX; Wang X; Sykes BD
    J Muscle Res Cell Motil; 2004; 25(7):559-79. PubMed ID: 15711886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of cardiac troponin C function by the cardiac-specific N-terminus of troponin I: influence of PKA phosphorylation and involvement in cardiomyopathies.
    Baryshnikova OK; Li MX; Sykes BD
    J Mol Biol; 2008 Jan; 375(3):735-51. PubMed ID: 18042489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex.
    Kimura-Sakiyama C; Ueno Y; Wakabayashi K; Miki M
    J Mol Biol; 2008 Feb; 376(1):80-91. PubMed ID: 18155235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin-filament-based modulation of contractile performance in human heart failure.
    Noguchi T; Hünlich M; Camp PC; Begin KJ; El-Zaru M; Patten R; Leavitt BJ; Ittleman FP; Alpert NR; LeWinter MM; VanBuren P
    Circulation; 2004 Aug; 110(8):982-7. PubMed ID: 15302786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin filament-mediated regulation of cardiac contraction.
    Tobacman LS
    Annu Rev Physiol; 1996; 58():447-81. PubMed ID: 8815803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Frank-Starling mechanism in vertebrate cardiac myocytes.
    Shiels HA; White E
    J Exp Biol; 2008 Jul; 211(Pt 13):2005-13. PubMed ID: 18552289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posttranslational modifications of cardiac troponin T: an overview.
    Streng AS; de Boer D; van der Velden J; van Dieijen-Visser MP; Wodzig WK
    J Mol Cell Cardiol; 2013 Oct; 63():47-56. PubMed ID: 23871791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in myofilament function contribute to left ventricular dysfunction in pigs early after myocardial infarction.
    van der Velden J; Merkus D; Klarenbeek BR; James AT; Boontje NM; Dekkers DH; Stienen GJ; Lamers JM; Duncker DJ
    Circ Res; 2004 Nov; 95(11):e85-95. PubMed ID: 15528471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single particle analysis of relaxed and activated muscle thin filaments.
    Pirani A; Xu C; Hatch V; Craig R; Tobacman LS; Lehman W
    J Mol Biol; 2005 Feb; 346(3):761-72. PubMed ID: 15713461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.