BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14765137)

  • 1. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging.
    Stroman PW; Kornelsen J; Bergman A; Krause V; Ethans K; Malisza KL; Tomanek B
    Spinal Cord; 2004 Feb; 42(2):59-66. PubMed ID: 14765137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective assessment of cervical spinal cord injury levels by transcranial magnetic motor-evoked potentials.
    Shields CB; Ping Zhang Y; Shields LB; Burke DA; Glassman SD
    Surg Neurol; 2006 Nov; 66(5):475-83; discussion 483. PubMed ID: 17084191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI.
    Endo T; Spenger C; Westman E; Tominaga T; Olson L
    Exp Neurol; 2008 Jan; 209(1):155-60. PubMed ID: 17988666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study.
    Cahill CM; Stroman PW
    Magn Reson Imaging; 2011 Apr; 29(3):342-52. PubMed ID: 21247717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pain following spinal cord injury: pathophysiology and central mechanisms.
    Yezierski RP
    Prog Brain Res; 2000; 129():429-49. PubMed ID: 11098709
    [No Abstract]   [Full Text] [Related]  

  • 6. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals.
    Lundell H; Christensen MS; Barthélemy D; Willerslev-Olsen M; Biering-Sørensen F; Nielsen JB
    Neuroimage; 2011 Jan; 54(2):1254-61. PubMed ID: 20851198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states.
    Bee LA; Dickenson AH
    Neuroscience; 2007 Jul; 147(3):786-93. PubMed ID: 17570596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats.
    Lesage F; Brieu N; Dubeau S; Beaumont E
    Neurosci Lett; 2009 Apr; 454(1):105-9. PubMed ID: 19429064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging in acute cervical spinal cord injury: a correlative study on spinal cord changes and 1 month motor recovery.
    Mahmood NS; Kadavigere R; Avinash KR; Rao VR
    Spinal Cord; 2008 Dec; 46(12):791-7. PubMed ID: 18542094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative comparison of BOLD fMRI responses to noxious and innocuous stimuli in the human spinal cord.
    Summers PE; Ferraro D; Duzzi D; Lui F; Iannetti GD; Porro CA
    Neuroimage; 2010 May; 50(4):1408-15. PubMed ID: 20096788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Issues about the fMRI of the human spinal cord.
    Giove F; Garreffa G; Giulietti G; Mangia S; Colonnese C; Maraviglia B
    Magn Reson Imaging; 2004 Dec; 22(10):1505-16. PubMed ID: 15707800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying functional MRI to the spinal cord and brainstem.
    Leitch JK; Figley CR; Stroman PW
    Magn Reson Imaging; 2010 Oct; 28(8):1225-33. PubMed ID: 20409662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo high-resolution imaging of the injured rat spinal cord using a 3.0T clinical MR scanner.
    Sandner B; Pillai DR; Heidemann RM; Schuierer G; Mueller MF; Bogdahn U; Schlachetzki F; Weidner N
    J Magn Reson Imaging; 2009 Mar; 29(3):725-30. PubMed ID: 19243068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive observation of cervical spinal cord activity in children by functional MRI during cold thermal stimulation.
    Lawrence JM; Kornelsen J; Stroman PW
    Magn Reson Imaging; 2011 Jul; 29(6):813-8. PubMed ID: 21571475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional magnetic resonance imaging of motor activation in the human cervical spinal cord.
    Yoshizawa T; Nose T; Moore GJ; Sillerud LO
    Neuroimage; 1996 Dec; 4(3 Pt 1):174-82. PubMed ID: 9345507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI.
    Stroman PW; Tomanek B; Krause V; Frankenstein UN; Malisza KL
    Neuroimage; 2002 Dec; 17(4):1854-60. PubMed ID: 12498759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory anal examination in spinal cord injury.
    Rahimi-Movaghar V
    Spinal Cord; 2009 Dec; 47(12):901. PubMed ID: 19564882
    [No Abstract]   [Full Text] [Related]  

  • 18. Levels of brain wave activity (8-13 Hz) in persons with spinal cord injury.
    Tran Y; Boord P; Middleton J; Craig A
    Spinal Cord; 2004 Feb; 42(2):73-9. PubMed ID: 14765139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese enhanced magnetic resonance imaging in a contusion model of spinal cord injury in rats: correlation with motor function.
    Walder N; Petter-Puchner AH; Brejnikow M; Redl H; Essig M; Stieltjes B
    Invest Radiol; 2008 May; 43(5):277-83. PubMed ID: 18424947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal pathways mediating coeruleospinal antinociception in the rat.
    Tsuruoka M; Maeda M; Nagasawa I; Inoue T
    Neurosci Lett; 2004 May; 362(3):236-9. PubMed ID: 15158022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.