BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 14765238)

  • 1. Metal ion induced allosteric transition in the catalytic activity of an artificial phosphodiesterase.
    Takebayashi S; Ikeda M; Takeuchi M; Shinkai S
    Chem Commun (Camb); 2004 Feb; (4):420-1. PubMed ID: 14765238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal ion induced allosteric transition in the catalytic activity of an artificial phosphodiesterase.
    Takebayashi S; Shinkai S; Ikeda M; Takeuchi M
    Org Biomol Chem; 2008 Feb; 6(3):493-9. PubMed ID: 18219419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tripodal, cooperative, and allosteric transphosphorylation metallocatalysts.
    Scarso A; Zaupa G; Houillon FB; Prins LJ; Scrimin P
    J Org Chem; 2007 Jan; 72(2):376-85. PubMed ID: 17221952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An allosteric synthetic catalyst: metal ions tune the activity of an artificial phosphodiesterase.
    Fritsky IO; Ott R; Pritzkow H; Krämer R
    Chemistry; 2001 Mar; 7(6):1221-31. PubMed ID: 11322548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An asymmetric dizinc phosphodiesterase model with phenolate and carboxylate bridges.
    Chen J; Wang X; Zhu Y; Lin J; Yang X; Li Y; Lu Y; Guo Z
    Inorg Chem; 2005 May; 44(10):3422-30. PubMed ID: 15877422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of structure and function in oligonuclear zinc(II) model phosphatases.
    Bauer-Siebenlist B; Meyer F; Farkas E; Vidovic D; Cuesta-Seijo JA; Herbst-Irmer R; Pritzkow H
    Inorg Chem; 2004 Jul; 43(14):4189-202. PubMed ID: 15236530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis of diribonucleoside monophosphate cleavage by water soluble copper(II) complexes of calix[4]arene based nitrogen ligands.
    Cacciapaglia R; Casnati A; Mandolini L; Reinhoudt DN; Salvio R; Sartori A; Ungaro R
    J Am Chem Soc; 2006 Sep; 128(37):12322-30. PubMed ID: 16967984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered allosteric ribozymes that respond to specific divalent metal ions.
    Zivarts M; Liu Y; Breaker RR
    Nucleic Acids Res; 2005; 33(2):622-31. PubMed ID: 15681614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiolabeled ligand binding to the catalytic or allosteric sites of PDE5 and PDE11.
    Weeks JL; Blount MA; Beasley A; Zoraghi R; Thomas MK; Sekhar KR; Corbin JD; Francis SH
    Methods Mol Biol; 2005; 307():239-62. PubMed ID: 15988068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of sphingomyelinase from Bacillus cereus by Zn2+ hitherto accepted as a strong inhibitor.
    Fujii S; Itoh H; Yoshida A; Higashi S; Ikezawa H; Ikeda K
    Arch Biochem Biophys; 2005 Apr; 436(2):227-36. PubMed ID: 15797235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of cysteine with Cu2+ and group IIb (Zn2+, Cd2+, Hg2+) metal cations: a theoretical study.
    Belcastro M; Marino T; Russo N; Toscano M
    J Mass Spectrom; 2005 Mar; 40(3):300-6. PubMed ID: 15685654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the catalytic mechanism of sphingomyelinases D and evolutionary relationship to glycerophosphodiester phosphodiesterases.
    Murakami MT; Fernandes-Pedrosa MF; de Andrade SA; Gabdoulkhakov A; Betzel C; Tambourgi DV; Arni RK
    Biochem Biophys Res Commun; 2006 Mar; 342(1):323-9. PubMed ID: 16480957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of glycerophosphodiester phosphodiesterase (GDPD) from Thermoanaerobacter tengcongensis, a metal ion-dependent enzyme: insight into the catalytic mechanism.
    Shi L; Liu JF; An XM; Liang DC
    Proteins; 2008 Jul; 72(1):280-8. PubMed ID: 18214974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metal ion regulated artificial metalloenzyme.
    Bersellini M; Roelfes G
    Dalton Trans; 2017 Mar; 46(13):4325-4330. PubMed ID: 28281708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric-controlled metal specificity of a ditopic ligand.
    Baylies CJ; Riis-Johannessen T; Harding LP; Jeffery JC; Moon R; Rice CR; Whitehead M
    Angew Chem Int Ed Engl; 2005 Oct; 44(42):6909-12. PubMed ID: 16206321
    [No Abstract]   [Full Text] [Related]  

  • 17. Metal ion substitution in the catalytic site greatly affects the binding of sulfhydryl-containing compounds to leucyl aminopeptidase.
    Cappiello M; Alterio V; Amodeo P; Del Corso A; Scaloni A; Pedone C; Moschini R; De Donatis GM; De Simone G; Mura U
    Biochemistry; 2006 Mar; 45(10):3226-34. PubMed ID: 16519517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism.
    Pelmenschikov V; Siegbahn PE
    Inorg Chem; 2005 May; 44(9):3311-20. PubMed ID: 15847441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide bond cleavages observed in SORI-CID of three nonapeptides complexed with divalent transition-metal cations.
    Mihalca R; van der Burgt YE; Heck AJ; Heeren RM
    J Mass Spectrom; 2007 Apr; 42(4):450-8. PubMed ID: 17295413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preorganized bis-zinc phosphodiester cleavage catalysts possessing natural ligands: a lesson pertinent to bimetallic artificial enzymes.
    Worm K; Chu F; Matsumoto K; Best MD; Lynch V; Anslyn EV
    Chemistry; 2003 Feb; 9(3):741-7. PubMed ID: 12569466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.