These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 14765238)

  • 1. Metal ion induced allosteric transition in the catalytic activity of an artificial phosphodiesterase.
    Takebayashi S; Ikeda M; Takeuchi M; Shinkai S
    Chem Commun (Camb); 2004 Feb; (4):420-1. PubMed ID: 14765238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal ion induced allosteric transition in the catalytic activity of an artificial phosphodiesterase.
    Takebayashi S; Shinkai S; Ikeda M; Takeuchi M
    Org Biomol Chem; 2008 Feb; 6(3):493-9. PubMed ID: 18219419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tripodal, cooperative, and allosteric transphosphorylation metallocatalysts.
    Scarso A; Zaupa G; Houillon FB; Prins LJ; Scrimin P
    J Org Chem; 2007 Jan; 72(2):376-85. PubMed ID: 17221952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An allosteric synthetic catalyst: metal ions tune the activity of an artificial phosphodiesterase.
    Fritsky IO; Ott R; Pritzkow H; Krämer R
    Chemistry; 2001 Mar; 7(6):1221-31. PubMed ID: 11322548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An asymmetric dizinc phosphodiesterase model with phenolate and carboxylate bridges.
    Chen J; Wang X; Zhu Y; Lin J; Yang X; Li Y; Lu Y; Guo Z
    Inorg Chem; 2005 May; 44(10):3422-30. PubMed ID: 15877422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of structure and function in oligonuclear zinc(II) model phosphatases.
    Bauer-Siebenlist B; Meyer F; Farkas E; Vidovic D; Cuesta-Seijo JA; Herbst-Irmer R; Pritzkow H
    Inorg Chem; 2004 Jul; 43(14):4189-202. PubMed ID: 15236530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis of diribonucleoside monophosphate cleavage by water soluble copper(II) complexes of calix[4]arene based nitrogen ligands.
    Cacciapaglia R; Casnati A; Mandolini L; Reinhoudt DN; Salvio R; Sartori A; Ungaro R
    J Am Chem Soc; 2006 Sep; 128(37):12322-30. PubMed ID: 16967984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered allosteric ribozymes that respond to specific divalent metal ions.
    Zivarts M; Liu Y; Breaker RR
    Nucleic Acids Res; 2005; 33(2):622-31. PubMed ID: 15681614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiolabeled ligand binding to the catalytic or allosteric sites of PDE5 and PDE11.
    Weeks JL; Blount MA; Beasley A; Zoraghi R; Thomas MK; Sekhar KR; Corbin JD; Francis SH
    Methods Mol Biol; 2005; 307():239-62. PubMed ID: 15988068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of sphingomyelinase from Bacillus cereus by Zn2+ hitherto accepted as a strong inhibitor.
    Fujii S; Itoh H; Yoshida A; Higashi S; Ikezawa H; Ikeda K
    Arch Biochem Biophys; 2005 Apr; 436(2):227-36. PubMed ID: 15797235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of cysteine with Cu2+ and group IIb (Zn2+, Cd2+, Hg2+) metal cations: a theoretical study.
    Belcastro M; Marino T; Russo N; Toscano M
    J Mass Spectrom; 2005 Mar; 40(3):300-6. PubMed ID: 15685654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the catalytic mechanism of sphingomyelinases D and evolutionary relationship to glycerophosphodiester phosphodiesterases.
    Murakami MT; Fernandes-Pedrosa MF; de Andrade SA; Gabdoulkhakov A; Betzel C; Tambourgi DV; Arni RK
    Biochem Biophys Res Commun; 2006 Mar; 342(1):323-9. PubMed ID: 16480957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of glycerophosphodiester phosphodiesterase (GDPD) from Thermoanaerobacter tengcongensis, a metal ion-dependent enzyme: insight into the catalytic mechanism.
    Shi L; Liu JF; An XM; Liang DC
    Proteins; 2008 Jul; 72(1):280-8. PubMed ID: 18214974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metal ion regulated artificial metalloenzyme.
    Bersellini M; Roelfes G
    Dalton Trans; 2017 Mar; 46(13):4325-4330. PubMed ID: 28281708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric-controlled metal specificity of a ditopic ligand.
    Baylies CJ; Riis-Johannessen T; Harding LP; Jeffery JC; Moon R; Rice CR; Whitehead M
    Angew Chem Int Ed Engl; 2005 Oct; 44(42):6909-12. PubMed ID: 16206321
    [No Abstract]   [Full Text] [Related]  

  • 17. Metal ion substitution in the catalytic site greatly affects the binding of sulfhydryl-containing compounds to leucyl aminopeptidase.
    Cappiello M; Alterio V; Amodeo P; Del Corso A; Scaloni A; Pedone C; Moschini R; De Donatis GM; De Simone G; Mura U
    Biochemistry; 2006 Mar; 45(10):3226-34. PubMed ID: 16519517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism.
    Pelmenschikov V; Siegbahn PE
    Inorg Chem; 2005 May; 44(9):3311-20. PubMed ID: 15847441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide bond cleavages observed in SORI-CID of three nonapeptides complexed with divalent transition-metal cations.
    Mihalca R; van der Burgt YE; Heck AJ; Heeren RM
    J Mass Spectrom; 2007 Apr; 42(4):450-8. PubMed ID: 17295413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preorganized bis-zinc phosphodiester cleavage catalysts possessing natural ligands: a lesson pertinent to bimetallic artificial enzymes.
    Worm K; Chu F; Matsumoto K; Best MD; Lynch V; Anslyn EV
    Chemistry; 2003 Feb; 9(3):741-7. PubMed ID: 12569466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.