These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14766144)

  • 1. Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response.
    McLaughlin D; Shapley R; Shelley M
    J Physiol Paris; 2003; 97(2-3):237-52. PubMed ID: 14766144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up and top-down dynamics in visual cortex.
    Schummers J; Sharma J; Sur M
    Prog Brain Res; 2005; 149():65-81. PubMed ID: 16226577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local networks in visual cortex and their influence on neuronal responses and dynamics.
    Schummers J; Mariño J; Sur M
    J Physiol Paris; 2004; 98(4-6):429-41. PubMed ID: 16274974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invariant computations in local cortical networks with balanced excitation and inhibition.
    Mariño J; Schummers J; Lyon DC; Schwabe L; Beck O; Wiesing P; Obermayer K; Sur M
    Nat Neurosci; 2005 Feb; 8(2):194-201. PubMed ID: 15665876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of orientation-selective inhibition in the primary visual cortex: a Bayes-Markov computational model.
    Shirazi MN
    Biol Cybern; 2004 Aug; 91(2):115-30. PubMed ID: 15340852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex.
    Lerchner A; Sterner G; Hertz J; Ahmadi M
    Network; 2006 Jun; 17(2):131-50. PubMed ID: 16818394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible mechanisms underlying tilt aftereffect in the primary visual cortex: a critical analysis with the aid of simple computational models.
    Ursino M; Magosso E; Cuppini C
    Vision Res; 2008 Jun; 48(13):1456-70. PubMed ID: 18485441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous pattern formation and pinning in the primary visual cortex.
    Baker TI; Cowan JD
    J Physiol Paris; 2009; 103(1-2):52-68. PubMed ID: 19523514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat V1.
    Palmer SE; Miller KD
    J Neurophysiol; 2007 Jul; 98(1):63-78. PubMed ID: 17507506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinwheel patterns give rise to the direction selectivity of complex cells in the primary visual cortex.
    Yao X; Jin L; Hu H
    Brain Res; 2007 Sep; 1170():140-6. PubMed ID: 17719018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex.
    Priebe NJ; Ferster D
    Neuron; 2005 Jan; 45(1):133-45. PubMed ID: 15629708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD; Heimel JA; Nelson SB
    Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic causal modeling of evoked responses in EEG and MEG.
    David O; Kiebel SJ; Harrison LM; Mattout J; Kilner JM; Friston KJ
    Neuroimage; 2006 May; 30(4):1255-72. PubMed ID: 16473023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamics of visual responses in the primary visual cortex.
    Shapley R; Hawken M; Xing D
    Prog Brain Res; 2007; 165():21-32. PubMed ID: 17925238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained reduction and analysis of a network model of cortical response: I. Drifting grating stimuli.
    Shelley M; McLaughlin D
    J Comput Neurosci; 2002; 12(2):97-122. PubMed ID: 12053156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
    Crowder NA; Price NS; Hietanen MA; Dreher B; Clifford CW; Ibbotson MR
    J Neurophysiol; 2006 Jan; 95(1):271-83. PubMed ID: 16192327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response variability in balanced cortical networks.
    Lerchner A; Ursta C; Hertz J; Ahmadi M; Ruffiot P; Enemark S
    Neural Comput; 2006 Mar; 18(3):634-59. PubMed ID: 16483411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of surround suppression through cortical feedback.
    Sullivan TJ; de Sa VR
    Neural Netw; 2006 Jun; 19(5):564-72. PubMed ID: 16500076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.