These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 14766186)

  • 1. Extinction times and moment closure in the stochastic logistic process.
    Newman TJ; Ferdy JB; Quince C
    Theor Popul Biol; 2004 Mar; 65(2):115-26. PubMed ID: 14766186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A derivative matching approach to moment closure for the stochastic logistic model.
    Singh A; Hespanha JP
    Bull Math Biol; 2007 Aug; 69(6):1909-25. PubMed ID: 17443391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models.
    Block GL; Allen LJ
    Bull Math Biol; 2000 Mar; 62(2):199-228. PubMed ID: 10824427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extinction times for a birth-death process with two phases.
    Ross JV; Pollett PK
    Math Biosci; 2006 Aug; 202(2):310-22. PubMed ID: 16624337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extinction in Fragmented Habitats Predicted from Stochastic Birth-death Processes with Density Dependence.
    Burkey TV
    J Theor Biol; 1999 Aug; 199(4):395-406. PubMed ID: 10441457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic fluctuations through intrinsic noise in evolutionary game dynamics.
    Tao Y; Cressman R
    Bull Math Biol; 2007 May; 69(4):1377-99. PubMed ID: 17318676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extinction risk and the 1/f family of noise models.
    Halley JM; Kunin WE
    Theor Popul Biol; 1999 Dec; 56(3):215-30. PubMed ID: 10607517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extinction and quasi-stationarity in the Verhulst logistic model.
    NĂ¥sell I
    J Theor Biol; 2001 Jul; 211(1):11-27. PubMed ID: 11407888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pair approximation for lattice models with multiple interaction scales.
    Ellner SP
    J Theor Biol; 2001 Jun; 210(4):435-47. PubMed ID: 11403564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demographic characteristics of extinction in a small, insular population of house sparrows in northern Norway.
    Ringsby TH; Saether BE; Jensen H; Engen S
    Conserv Biol; 2006 Dec; 20(6):1761-7. PubMed ID: 17181811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extinction risk in a temporally correlated fluctuating environment.
    Johst K; Wissel C
    Theor Popul Biol; 1997 Oct; 52(2):91-100. PubMed ID: 9356326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local extinction and the evolution of dispersal rates: causes and correlations.
    Poethke HJ; Hovestadt T; Mitesser O
    Am Nat; 2003 Apr; 161(4):631-40. PubMed ID: 12776889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timescales of population rarity and commonness in random environments.
    Ferriere R; Guionnet A; Kurkova I
    Theor Popul Biol; 2006 Jun; 69(4):351-66. PubMed ID: 16527320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel bivariate moment-closure approximations.
    Krishnarajah I; Marion G; Gibson G
    Math Biosci; 2007 Aug; 208(2):621-43. PubMed ID: 17300816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extinction dynamics in mainland-island metapopulations: an N-patch stochastic model.
    Alonso D; Mckane A
    Bull Math Biol; 2002 Sep; 64(5):913-58. PubMed ID: 12391862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary responses to environmental changes: how does competition affect adaptation?
    Johansson J
    Evolution; 2008 Feb; 62(2):421-35. PubMed ID: 18031306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel moment closure approximations in stochastic epidemics.
    Krishnarajah I; Cook A; Marion G; Gibson G
    Bull Math Biol; 2005 Jul; 67(4):855-73. PubMed ID: 15893556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extinction risk of a meta-population: aggregation approach.
    Hakoyama H; Iwasa Y
    J Theor Biol; 2005 Jan; 232(2):203-16. PubMed ID: 15530490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The amplification of environmental noise in population models: causes and consequences.
    Greenman JV; Benton TG
    Am Nat; 2003 Feb; 161(2):225-39. PubMed ID: 12675369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption and fixation times for neutral and quasi-neutral populations with density dependence.
    Parsons TL; Quince C; Plotkin JB
    Theor Popul Biol; 2008 Dec; 74(4):302-10. PubMed ID: 18835288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.