BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 14766219)

  • 1. An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy.
    Singh NN; Androphy EJ; Singh RN
    Biochem Biophys Res Commun; 2004 Mar; 315(2):381-8. PubMed ID: 14766219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.
    Singh NN; Lee BM; Singh RN
    Ann N Y Acad Sci; 2015 Apr; 1341():176-87. PubMed ID: 25727246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1.
    Rooke N; Markovtsov V; Cagavi E; Black DL
    Mol Cell Biol; 2003 Mar; 23(6):1874-84. PubMed ID: 12612063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rare variant (c.863G>T) in exon 7 of SMN1 disrupts mRNA splicing and is responsible for spinal muscular atrophy.
    Qu YJ; Bai JL; Cao YY; Zhang WH; Wang H; Jin YW; Song F
    Eur J Hum Genet; 2016 Jun; 24(6):864-70. PubMed ID: 26419278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy.
    Singh NN; Lawler MN; Ottesen EW; Upreti D; Kaczynski JR; Singh RN
    Nucleic Acids Res; 2013 Sep; 41(17):8144-65. PubMed ID: 23861442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HnRNPR strongly represses splicing of a critical exon associated with spinal muscular atrophy through binding to an exonic AU-rich element.
    Jiang T; Qu R; Liu X; Hou Y; Wang L; Hua Y
    J Med Genet; 2023 Nov; 60(11):1105-1115. PubMed ID: 37225410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein.
    Seo J; Singh NN; Ottesen EW; Lee BM; Singh RN
    Sci Rep; 2016 Aug; 6():30778. PubMed ID: 27481219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HnRNP L represses exon splicing via a regulated exonic splicing silencer.
    Rothrock CR; House AE; Lynch KW
    EMBO J; 2005 Aug; 24(15):2792-802. PubMed ID: 16001081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of single-stranded nucleic acids by small-molecule splicing modulators.
    Tang Z; Akhter S; Ramprasad A; Wang X; Reibarkh M; Wang J; Aryal S; Thota SS; Zhao J; Douglas JT; Gao P; Holmstrom ED; Miao Y; Wang J
    Nucleic Acids Res; 2021 Aug; 49(14):7870-7883. PubMed ID: 34283224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modeling study of co-transcriptional metabolism of hnRNP using FMR1 gene.
    Ro-Choi TS; Choi YC
    Mol Cells; 2007 Apr; 23(2):228-38. PubMed ID: 17464201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface PD-1 expression in T cells is suppressed by HNRNPK through an exonic splicing silencer on exon 3.
    Wang J; Yan L; Wang X; Jia R; Guo J
    Inflamm Res; 2024 May; ():. PubMed ID: 38698180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.
    Singh NK; Singh NN; Androphy EJ; Singh RN
    Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
    Singh RN; Singh NN
    Adv Neurobiol; 2018; 20():31-61. PubMed ID: 29916015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes.
    Singh NN; Singh RN; Androphy EJ
    Nucleic Acids Res; 2007; 35(2):371-89. PubMed ID: 17170000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering RNA splicing logic with interpretable machine learning.
    Liao SE; Sudarshan M; Regev O
    Proc Natl Acad Sci U S A; 2023 Oct; 120(41):e2221165120. PubMed ID: 37796983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy.
    Ottesen EW; Singh NN; Luo D; Kaas B; Gillette BJ; Seo J; Jorgensen HJ; Singh RN
    Nucleic Acids Res; 2023 Jul; 51(12):5948-5980. PubMed ID: 37026480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base editing rescue of spinal muscular atrophy in cells and in mice.
    Arbab M; Matuszek Z; Kray KM; Du A; Newby GA; Blatnik AJ; Raguram A; Richter MF; Zhao KT; Levy JM; Shen MW; Arnold WD; Wang D; Xie J; Gao G; Burghes AHM; Liu DR
    Science; 2023 Apr; 380(6642):eadg6518. PubMed ID: 36996170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function analysis of Sam68 and hnRNP A1 synergy in the exclusion of exon 7 from SMN2 transcripts.
    Nadal M; Anton R; Dorca-Arévalo J; Estébanez-Perpiñá E; Tizzano EF; Fuentes-Prior P
    Protein Sci; 2023 Apr; 32(4):e4553. PubMed ID: 36560896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When a Synonymous Variant Is Nonsynonymous.
    Vihinen M
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011397
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.