BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 14766410)

  • 1. Plasticity of neuronal responses induced by low concentrations of exogenous ligands affecting cellular calcium stores.
    Epstein OI; Zapara TA; Simonova OG; Ratushnyak AS; Shtark MB
    Front Biosci; 2004 Jan; 9():809-15. PubMed ID: 14766410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low concentrations of caffeine raise intracellular calcium concentration only in the presence of extracellular calcium in cultured molluscan neurons.
    Ahmed IA; Hopkins PM; Winlow W
    Gen Pharmacol; 1997 Feb; 28(2):245-50. PubMed ID: 9013202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of the dynamic state of the cytoskeleton on neuronal plasticity.
    Zapara TA; Simonova OG; Zharkikh AA; Ratushnyak AS
    Neurosci Behav Physiol; 2000; 30(3):347-55. PubMed ID: 10970030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium inhibits GABA-activated ion currents by increasing intracellular calcium level in snail neurons.
    Molnár G; Salánki J; Kiss T
    Brain Res; 2004 May; 1008(2):205-11. PubMed ID: 15145758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effect of changes in the dynamic equilibrium in the microtubular and microfilamentous systems on neuronal plastic reactions].
    Ratushniak AS; Zapara TA; Zharkikh AA; Ratushniak OA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(2):355-62. PubMed ID: 8726570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Levetiracetam reduces caffeine-induced Ca2+ transients and epileptiform potentials in hippocampal neurons.
    Angehagen M; Margineanu DG; Ben-Menachem E; Rönnbäck L; Hansson E; Klitgaard H
    Neuroreport; 2003 Mar; 14(3):471-5. PubMed ID: 12634506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ryanodine receptors influences the paired-pulse depression in cultured rat hippocampal neurons.
    Kravchenko MO; Moskalyuk AO; Kolodin YO; Veselovsky NS; Fedulova SA
    Fiziol Zh (1994); 2004; 50(4):50-6. PubMed ID: 15460027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related alterations in caffeine-sensitive calcium stores and mitochondrial buffering in rat basal forebrain.
    Murchison D; Griffith WH
    Cell Calcium; 1999 Jun; 25(6):439-52. PubMed ID: 10579055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Ruthenium red as a partial agonist in caffeine-induced neurotoxicity in cerebellar granular cell culture of rats.
    Bakuridze K; Duzenli S; Gepdiremen A
    Int J Neurosci; 2005 Jan; 115(1):13-21. PubMed ID: 15768848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of caffeine on the influx of extracellular calcium in GH4C1 pituitary cells.
    Karhapää L; Törnquist K
    J Cell Physiol; 1997 Apr; 171(1):52-60. PubMed ID: 9119892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium responses to caffeine and muscarinic receptor agonists are altered in traumatically injured neurons.
    Weber JT; Rzigalinski BA; Ellis EF
    J Neurotrauma; 2002 Nov; 19(11):1433-43. PubMed ID: 12490008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired calcium release in cerebellar Purkinje neurons maintained in culture.
    Womack MD; Walker JW; Khodakhah K
    J Gen Physiol; 2000 Mar; 115(3):339-46. PubMed ID: 10694261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium signaling, excitability, and synaptic plasticity defects in a mouse model of Alzheimer's disease.
    Zhang H; Liu J; Sun S; Pchitskaya E; Popugaeva E; Bezprozvanny I
    J Alzheimers Dis; 2015; 45(2):561-80. PubMed ID: 25589721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of caffeine on the processes of intracellular Ca2+ concentration regulation in isolated snail neurons].
    Usachev IuM; Mironov SL
    Neirofiziologiia; 1991; 23(1):66-73. PubMed ID: 2034300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of the cytoskeleton dynamic condition on the neuronal plasticity].
    Zapara TA; Simonova OG; Zharkikh AA; Ratushniak AS
    Ross Fiziol Zh Im I M Sechenova; 1999 Jan; 85(1):128-38. PubMed ID: 10389170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sites of action of praziquantel in a smooth muscle of Lymnaea stagnalis.
    Gardner DR; Brezden BL
    Can J Physiol Pharmacol; 1984 Mar; 62(3):282-7. PubMed ID: 6722654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O; Yaari Y; Konnerth A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons.
    Korkotian E; Segal M
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12068-72. PubMed ID: 10518577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast confocal imaging of calcium released from stores in dendritic spines.
    Korkotian E; Segal M
    Eur J Neurosci; 1998 Jun; 10(6):2076-84. PubMed ID: 9753094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ryanodine-sensitive stores regulate the excitability of AH neurons in the myenteric plexus of guinea-pig ileum.
    Hillsley K; Kenyon JL; Smith TK
    J Neurophysiol; 2000 Dec; 84(6):2777-85. PubMed ID: 11110808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.