These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14766562)

  • 41. Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum.
    Govindwar SP; Kurade MB; Tamboli DP; Kabra AN; Kim PJ; Waghmode TR
    Chemosphere; 2014 Aug; 109():234-8. PubMed ID: 24630455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic study approach of remazol black-B use for the development of two-stage anoxic-oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium.
    Dafale N; Wate S; Meshram S; Nandy T
    J Hazard Mater; 2008 Nov; 159(2-3):319-28. PubMed ID: 18394798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach.
    Gopinath KP; Murugesan S; Abraham J; Muthukumar K
    Bioresour Technol; 2009 Dec; 100(24):6295-300. PubMed ID: 19692233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification, characterization, and crystal structure of YhdA-type azoreductase from Bacillus velezensis.
    Bafana A; Khan F; Suguna K
    Proteins; 2021 May; 89(5):483-492. PubMed ID: 33289153
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1.
    Ghosh DK; Mandal A; Chaudhuri J
    FEMS Microbiol Lett; 1992 Nov; 77(1-3):229-33. PubMed ID: 1459414
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning and characterization of a Flavin-free oxygen-insensitive azoreductase from Klebsiella oxytoca GS-4-08.
    Hua JQ; Yu L
    Biotechnol Lett; 2019 Mar; 41(3):371-378. PubMed ID: 30635809
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4.
    Imran M; Arshad M; Negm F; Khalid A; Shaharoona B; Hussain S; Mahmood Nadeem S; Crowley DE
    Ecotoxicol Environ Saf; 2016 Feb; 124():42-49. PubMed ID: 26454074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes.
    Srinivasan S; Sadasivam SK; Gunalan S; Shanmugam G; Kothandan G
    Environ Pollut; 2019 May; 248():599-608. PubMed ID: 30836241
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymatic degradation of sulphonated azo dye using purified azoreductase from facultative Klebsiella pneumoniae.
    Dixit S; Garg S
    Folia Microbiol (Praha); 2021 Feb; 66(1):79-85. PubMed ID: 32946071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decolorization of textile dyes by Alishewanella sp. KMK6.
    Kolekar YM; Kodam KM
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):521-9. PubMed ID: 22089388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient industrial dye decolorization by Bacillus sp. VUS with its enzyme system.
    Dawkar VV; Jadhav UU; Tamboli DP; Govindwar SP
    Ecotoxicol Environ Saf; 2010 Oct; 73(7):1696-703. PubMed ID: 20655588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reduction of reactive red 241 by oxygen insensitive azoreductase purified from a novel strain Staphylococcus KU898286.
    Nisar N; Aleem A; Saleem F; Aslam F; Shahid A; Chaudhry H; Malik K; Albaser A; Iqbal A; Qadri R; Yang Y
    PLoS One; 2017; 12(5):e0175551. PubMed ID: 28467413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring new strains of dye-decolorizing bacteria.
    Han JL; Ng IS; Wang Y; Zheng X; Chen WM; Hsueh CC; Liu SQ; Chen BY
    J Biosci Bioeng; 2012 Apr; 113(4):508-14. PubMed ID: 22178338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decolorization mechanism, identification of an FMN-dependent NADH-azoreductase from a moderately halotolerant Staphylococcus sp. MEH038S, and toxicity assessment of biotransformed metabolites.
    Fazeliyan E; Sadeghi M; Forouzandeh S; Doosti A; Mohammadi Moghadam F; Sedehi M; Emadi Z; Sadeghi R
    Water Environ Res; 2021 Oct; 93(10):2072-2083. PubMed ID: 33977577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular dynamics study of biodegradation of azo dyes via their interactions with AzrC azoreductase.
    Haghshenas H; Kay M; Dehghanian F; Tavakol H
    J Biomol Struct Dyn; 2016; 34(3):453-62. PubMed ID: 26325128
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification of two azoreductases from Escherichia coli K12.
    Ghosh DK; Ghosh S; Sadhukhan P; Mandal A; Chaudhuri J
    Indian J Exp Biol; 1993 Dec; 31(12):951-4. PubMed ID: 8112774
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Azoreductase in Staphylococcus aureus.
    Zou W; Cerniglia CE; Chen H
    Curr Protoc Toxicol; 2009; Chapter 4():Unit4.28. PubMed ID: 23045013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and molecular characterization of a novel flavin-free NADPH preferred azoreductase encoded by azoB in Pigmentiphaga kullae K24.
    Chen H; Feng J; Kweon O; Xu H; Cerniglia CE
    BMC Biochem; 2010 Mar; 11():13. PubMed ID: 20233432
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1.
    Khan S; Malik A
    Can J Microbiol; 2016 Mar; 62(3):220-32. PubMed ID: 26911309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The microbial degradation of azo dyes: minireview.
    Chengalroyen MD; Dabbs ER
    World J Microbiol Biotechnol; 2013 Mar; 29(3):389-99. PubMed ID: 23108664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.