BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 14766741)

  • 21. Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies.
    Clay MD; Yang TC; Jenney FE; Kung IY; Cosper CA; Krishnan R; Kurtz DM; Adams MW; Hoffman BM; Johnson MK
    Biochemistry; 2006 Jan; 45(2):427-38. PubMed ID: 16401073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and spectroscopy of micro-oxo (O(2)(-))-bridged heme/non-heme diiron complexes: models for the active site of nitric oxide reductase.
    Wasser IM; Martens CF; Verani CN; Rentschler E; Huang HW; Moënne-Loccoz P; Zakharov LN; Rheingold AL; Karlin KD
    Inorg Chem; 2004 Jan; 43(2):651-62. PubMed ID: 14731027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unexpected weak magnetic exchange coupling between haem and non-haem iron in the catalytic site of nitric oxide reductase (NorBC) from Paracoccus denitrificans1.
    Van Wonderen JH; Oganesyan VS; Watmough NJ; Richardson DJ; Thomson AJ; Cheesman MR
    Biochem J; 2013 May; 451(3):389-94. PubMed ID: 23421449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonance Raman spectroscopy of nitric oxide reductase and cbb(3) heme-copper oxidase.
    Pinakoulaki E; Varotsis C
    J Phys Chem B; 2008 Feb; 112(6):1851-7. PubMed ID: 18211060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The bacterial respiratory nitric oxide reductase.
    Watmough NJ; Field SJ; Hughes RJ; Richardson DJ
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):392-9. PubMed ID: 19290869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the mechanism of nitric oxide reductase from a Fe
    Kahle M; Blomberg MRA; Jareck S; Ädelroth P
    FEBS Lett; 2019 Jun; 593(12):1351-1359. PubMed ID: 31077353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric-oxide reductase. Structure and properties of the catalytic site from resonance Raman scattering.
    Pinakoulaki E; Gemeinhardt S; Saraste M; Varotsis C
    J Biol Chem; 2002 Jun; 277(26):23407-13. PubMed ID: 11971903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversal of cyanide inhibition of cytochrome c oxidase by the auxiliary substrate nitric oxide: an endogenous antidote to cyanide poisoning?
    Pearce LL; Bominaar EL; Hill BC; Peterson J
    J Biol Chem; 2003 Dec; 278(52):52139-45. PubMed ID: 14534303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of a soluble domain of subunit C of a bacterial nitric oxide reductase.
    Oubrie A; Gemeinhardt S; Field S; Marritt S; Thomson AJ; Saraste M; Richardson DJ
    Biochemistry; 2002 Sep; 41(35):10858-65. PubMed ID: 12196025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A functional nitric oxide reductase model.
    Collman JP; Yang Y; Dey A; Decréau RA; Ghosh S; Ohta T; Solomon EI
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15660-5. PubMed ID: 18838684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum mechanical interpretation of nitrite reduction by cytochrome cd1 nitrite reductase from Paracoccus pantotrophus.
    Ranghino G; Scorza E; Sjögren T; Williams PA; Ricci M; Hajdu J
    Biochemistry; 2000 Sep; 39(36):10958-66. PubMed ID: 10998232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of interactions among the heme center, tetrahydrobiopterin, and L-arginine binding sites of ferric eNOS using imidazole, cyanide, and nitric oxide as probes.
    Berka V; Tsai AL
    Biochemistry; 2000 Aug; 39(31):9373-83. PubMed ID: 10924132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide.
    Preimesberger MR; Johnson EA; Nye DB; Lecomte JTJ
    J Inorg Biochem; 2017 Dec; 177():171-182. PubMed ID: 28968520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The active site of the bacterial nitric oxide reductase is a dinuclear iron center.
    Hendriks J; Warne A; Gohlke U; Haltia T; Ludovici C; Lübben M; Saraste M
    Biochemistry; 1998 Sep; 37(38):13102-9. PubMed ID: 9748316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity.
    Dey A; Jenney FE; Adams MW; Johnson MK; Hodgson KO; Hedman B; Solomon EI
    J Am Chem Soc; 2007 Oct; 129(41):12418-31. PubMed ID: 17887751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the Two Metals in the Active Sites of Heme Copper Oxidases-A Study of NO Reduction in
    Blomberg MRA
    Inorg Chem; 2020 Aug; 59(16):11542-11553. PubMed ID: 32799475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 A resolution.
    Haltia T; Brown K; Tegoni M; Cambillau C; Saraste M; Mattila K; Djinovic-Carugo K
    Biochem J; 2003 Jan; 369(Pt 1):77-88. PubMed ID: 12356332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pathway for protons in nitric oxide reductase from Paracoccus denitrificans.
    Reimann J; Flock U; Lepp H; Honigmann A; Adelroth P
    Biochim Biophys Acta; 2007 May; 1767(5):362-73. PubMed ID: 17466934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type.
    Zumft WG
    J Inorg Biochem; 2005 Jan; 99(1):194-215. PubMed ID: 15598502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.