BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 14766741)

  • 41. Exploring second coordination sphere effects in nitric oxide synthase.
    McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N
    J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase.
    Pinakoulaki E; Varotsis C
    J Inorg Biochem; 2008; 102(5-6):1277-87. PubMed ID: 18334269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proton delivery in NO reduction by fungal nitric-oxide reductase. Cryogenic crystallography, spectroscopy, and kinetics of ferric-NO complexes of wild-type and mutant enzymes.
    Shimizu H; Obayashi E; Gomi Y; Arakawa H; Park SY; Nakamura H; Adachi S; Shoun H; Shiro Y
    J Biol Chem; 2000 Feb; 275(7):4816-26. PubMed ID: 10671516
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Y25S variant of Paracoccus pantotrophus cytochrome cd1 provides insight into anion binding by d1 heme and a rare example of a critical difference between solution and crystal structures.
    Zajicek RS; Cheesman MR; Gordon EH; Ferguson SJ
    J Biol Chem; 2005 Jul; 280(28):26073-9. PubMed ID: 15901734
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans.
    Girsch P; de Vries S
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):202-16. PubMed ID: 9030265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The nitric oxide reductase mechanism of a flavo-diiron protein: identification of active-site intermediates and products.
    Caranto JD; Weitz A; Hendrich MP; Kurtz DM
    J Am Chem Soc; 2014 Jun; 136(22):7981-92. PubMed ID: 24828196
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reaction with cyanide of hydroxylamine oxidoreductase of Nitrosomonas europaea.
    Logan MS; Balny C; Hooper AB
    Biochemistry; 1995 Jul; 34(28):9028-37. PubMed ID: 7619802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway.
    Ter Beek J; Krause N; Reimann J; Lachmann P; Ädelroth P
    J Biol Chem; 2013 Oct; 288(42):30626-30635. PubMed ID: 24014024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ferric heme as a CO/NO sensor in the nuclear receptor Rev-Erbß by coupling gas binding to electron transfer.
    Sarkar A; Carter EL; Harland JB; Speelman AL; Lehnert N; Ragsdale SW
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33436410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structures of ferrous and CO-, CN(-)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1.
    Sugishima M; Sakamoto H; Noguchi M; Fukuyama K
    Biochemistry; 2003 Aug; 42(33):9898-905. PubMed ID: 12924938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle.
    Sabuncu S; Reed JH; Lu Y; Moënne-Loccoz P
    J Am Chem Soc; 2018 Dec; 140(50):17389-17393. PubMed ID: 30512937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.
    Fujiwara T; Fukumori Y
    J Bacteriol; 1996 Apr; 178(7):1866-71. PubMed ID: 8606159
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D
    Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of nitric oxide in the active site of reduced cytochrome c oxidase aa3.
    Vos MH; Lipowski G; Lambry JC; Martin JL; Liebl U
    Biochemistry; 2001 Jul; 40(26):7806-11. PubMed ID: 11425307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spectroscopic characterization of mononitrosyl complexes in heme--nonheme diiron centers within the myoglobin scaffold (Fe(B)Mbs): relevance to denitrifying NO reductase.
    Hayashi T; Miner KD; Yeung N; Lin YW; Lu Y; Moënne-Loccoz P
    Biochemistry; 2011 Jul; 50(26):5939-47. PubMed ID: 21634416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG.
    Jensen LM; Meharenna YT; Davidson VL; Poulos TL; Hedman B; Wilmot CM; Sarangi R
    J Biol Inorg Chem; 2012 Dec; 17(8):1241-55. PubMed ID: 23053529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular Heme-Cyanide-Copper Bridged Assemblies: Linkage Isomerism, Trends in nu(CN) Values, and Relation to the Heme-a(3)/Cu(B) Site in Cyanide-Inhibited Heme-Copper Oxidases.
    Lim BS; Holm RH
    Inorg Chem; 1998 Sep; 37(19):4898-4908. PubMed ID: 11670655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interrogation of heme pocket environment of mammalian peroxidases with diatomic ligands.
    Abu-Soud HM; Hazen SL
    Biochemistry; 2001 Sep; 40(36):10747-55. PubMed ID: 11535049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.
    Parashar A; Venkatachalam A; Gideon DA; Manoj KM
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):190-3. PubMed ID: 25449264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.