BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 14766751)

  • 1. The affinity of GXXXG motifs in transmembrane helix-helix interactions is modulated by long-range communication.
    Melnyk RA; Kim S; Curran AR; Engelman DM; Bowie JU; Deber CM
    J Biol Chem; 2004 Apr; 279(16):16591-7. PubMed ID: 14766751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane helix association affinity can be modulated by flanking and noninterfacial residues.
    Zhang J; Lazaridis T
    Biophys J; 2009 Jun; 96(11):4418-27. PubMed ID: 19486666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
    Psachoulia E; Marshall DP; Sansom MS
    Acc Chem Res; 2010 Mar; 43(3):388-96. PubMed ID: 20017540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.
    Johnson RM; Rath A; Deber CM
    Biochem Cell Biol; 2006 Dec; 84(6):1006-12. PubMed ID: 17215886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes.
    Li R; Gorelik R; Nanda V; Law PB; Lear JD; DeGrado WF; Bennett JS
    J Biol Chem; 2004 Jun; 279(25):26666-73. PubMed ID: 15067009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid solvation effects contribute to the affinity of Gly-xxx-Gly motif-mediated helix-helix interactions.
    Johnson RM; Rath A; Melnyk RA; Deber CM
    Biochemistry; 2006 Jul; 45(28):8507-15. PubMed ID: 16834324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane helix-helix interactions: comparative simulations of the glycophorin a dimer.
    Cuthbertson JM; Bond PJ; Sansom MS
    Biochemistry; 2006 Dec; 45(48):14298-310. PubMed ID: 17128969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligomerization, biogenesis, and signaling is promoted by a glycophorin A-like dimerization motif in transmembrane domain 1 of a yeast G protein-coupled receptor.
    Overton MC; Chinault SL; Blumer KJ
    J Biol Chem; 2003 Dec; 278(49):49369-77. PubMed ID: 14506226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of GxxxG Motifs in Transmembrane Domain Interactions.
    Teese MG; Langosch D
    Biochemistry; 2015 Aug; 54(33):5125-35. PubMed ID: 26244771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane domain mediated self-assembly of major coat protein subunits from Ff bacteriophage.
    Melnyk RA; Partridge AW; Deber CM
    J Mol Biol; 2002 Jan; 315(1):63-72. PubMed ID: 11771966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices.
    Lemmon MA; Flanagan JM; Hunt JF; Adair BD; Bormann BJ; Dempsey CE; Engelman DM
    J Biol Chem; 1992 Apr; 267(11):7683-9. PubMed ID: 1560003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-branched residues adjacent to GG4 motifs promote the efficient association of glycophorin A transmembrane helices.
    Cunningham F; Poulsen BE; Ip W; Deber CM
    Biopolymers; 2011; 96(3):340-7. PubMed ID: 21072853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles.
    Kleiger G; Grothe R; Mallick P; Eisenberg D
    Biochemistry; 2002 May; 41(19):5990-7. PubMed ID: 11993993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide mimics of the M13 coat protein transmembrane segment. Retention of helix-helix interaction motifs.
    Wang C; Deber CM
    J Biol Chem; 2000 May; 275(21):16155-9. PubMed ID: 10747951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation approach for the prediction of transmembrane helix-helix heterodimers assembly.
    Samna Soumana O; Garnier N; Genest M
    Eur Biophys J; 2007 Nov; 36(8):1071-82. PubMed ID: 17646979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties.
    Cymer F; Veerappan A; Schneider D
    Biochim Biophys Acta; 2012 Apr; 1818(4):963-73. PubMed ID: 21827736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The GxxxG motif: a framework for transmembrane helix-helix association.
    Russ WP; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):911-9. PubMed ID: 10677291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer.
    Doura AK; Fleming KG
    J Mol Biol; 2004 Nov; 343(5):1487-97. PubMed ID: 15491626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: roles for sequence context in helix-helix association in membranes.
    Lawrie CM; Sulistijo ES; MacKenzie KR
    J Mol Biol; 2010 Mar; 396(4):924-36. PubMed ID: 20026130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.