These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 14766934)

  • 21. Effects of background noise on the response of rat and cat motoneurones to excitatory current transients.
    Poliakov AV; Powers RK; Sawczuk A; Binder MD
    J Physiol; 1996 Aug; 495 ( Pt 1)(Pt 1):143-57. PubMed ID: 8866358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The vibrissal motor output following severing and repair of the facial nerve in the newborn rat reorganises less than in the adult.
    Franchi G; Maggiolini E; Muzzioli V; Guandalini P
    Eur J Neurosci; 2006 Mar; 23(6):1547-58. PubMed ID: 16553618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-dependent changes in input resistance of rat hypoglossal motoneurons associated with whole-cell recording.
    Robinson DW; Cameron WE
    J Neurophysiol; 2000 May; 83(5):3160-4. PubMed ID: 10805711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D reconstruction and standardization of the rat facial nucleus for precise mapping of vibrissal motor networks.
    Guest JM; Seetharama MM; Wendel ES; Strick PL; Oberlaender M
    Neuroscience; 2018 Jan; 368():171-186. PubMed ID: 28958919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hindlimb unweighting for 2 weeks alters physiological properties of rat hindlimb motoneurones.
    Cormery B; Beaumont E; Csukly K; Gardiner P
    J Physiol; 2005 Nov; 568(Pt 3):841-50. PubMed ID: 16123107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The excitability of lumbar motoneurones in the neonatal rat is increased by a hyperpolarization of their voltage threshold for activation by descending serotonergic fibres.
    Gilmore J; Fedirchuk B
    J Physiol; 2004 Jul; 558(Pt 1):213-24. PubMed ID: 15121804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oestradiol rapidly enhances spontaneous glycinergic synaptic inhibition of hypoglossal motoneurones.
    Chesnoy-Marchais D; Meillerais A
    J Neuroendocrinol; 2008 Feb; 20(2):233-44. PubMed ID: 18047550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of the input signal and prior activation history to the discharge behaviour of rat motoneurones.
    Powers RK; Dai Y; Bell BM; Percival DB; Binder MD
    J Physiol; 2005 Feb; 562(Pt 3):707-24. PubMed ID: 15611038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking.
    O'Connor SM; Berg RW; Kleinfeld D
    J Neurophysiol; 2002 Apr; 87(4):2137-48. PubMed ID: 11929931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Band-pass response properties of rat SI neurons.
    Garabedian CE; Jones SR; Merzenich MM; Dale A; Moore CI
    J Neurophysiol; 2003 Sep; 90(3):1379-91. PubMed ID: 12750410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What generates whisking? Focus on: "The whisking rhythm generator: a novel mammalian network for the generation of movement".
    Castro-Alamancos MA
    J Neurophysiol; 2007 Mar; 97(3):1883-4. PubMed ID: 17202236
    [No Abstract]   [Full Text] [Related]  

  • 32. Enkephalinergic inhibition of raphe pallidus inputs to rat hypoglossal motoneurones in vitro.
    Bouryi VA; Lewis DI
    Neuroscience; 2004; 129(1):55-64. PubMed ID: 15489028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theta-frequency membrane resonance and its ionic mechanisms in rat subicular pyramidal neurons.
    Wang WT; Wan YH; Zhu JL; Lei GS; Wang YY; Zhang P; Hu SJ
    Neuroscience; 2006 Jun; 140(1):45-55. PubMed ID: 16527421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive filtering of vibrissa input in motor cortex of rat.
    Kleinfeld D; Sachdev RN; Merchant LM; Jarvis MR; Ebner FF
    Neuron; 2002 Jun; 34(6):1021-34. PubMed ID: 12086648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling hypoglossal motoneurons in the developing rat.
    Williams PA; Dalton C; Wilson CG
    Respir Physiol Neurobiol; 2019 Jul; 265():40-48. PubMed ID: 30056243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibrissa resonance as a transduction mechanism for tactile encoding.
    Neimark MA; Andermann ML; Hopfield JJ; Moore CI
    J Neurosci; 2003 Jul; 23(16):6499-509. PubMed ID: 12878691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dynamic response of cat alpha-motoneurones investigated by intracellular injection of sinusoidal currents.
    Baldissera F; Campadelli P; Piccinelli L
    Exp Brain Res; 1984; 54(2):275-82. PubMed ID: 6723848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The whisking oscillator circuit.
    Takatoh J; Prevosto V; Thompson PM; Lu J; Chung L; Harrahill A; Li S; Zhao S; He Z; Golomb D; Kleinfeld D; Wang F
    Nature; 2022 Sep; 609(7927):560-568. PubMed ID: 36045290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Brainstem Oscillator for Whisking and the Case for Breathing as the Master Clock for Orofacial Motor Actions.
    Kleinfeld D; Moore JD; Wang F; Deschênes M
    Cold Spring Harb Symp Quant Biol; 2014; 79():29-39. PubMed ID: 25876629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism and function of mixed-mode oscillations in vibrissa motoneurons.
    Golomb D
    PLoS One; 2014; 9(10):e109205. PubMed ID: 25275462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.