These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 14766970)

  • 21. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells.
    Chutipongtanate S; Chaiyarit S; Thongboonkerd V
    Eur J Pharmacol; 2012 Aug; 689(1-3):219-25. PubMed ID: 22713548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms: an analysis by scanning confocal interference microcopy.
    Langdon A; Wignall GR; Rogers K; Sørensen ES; Denstedt J; Grohe B; Goldberg HA; Hunter GK
    Calcif Tissue Int; 2009 Mar; 84(3):240-8. PubMed ID: 19189038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of crystal surface adhesion in kidney stone disease.
    Wesson JA; Ward MD
    Curr Opin Nephrol Hypertens; 2006 Jul; 15(4):386-93. PubMed ID: 16775453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of crystal growth of calcium oxalate in gel and its modification by urinary constituents in a new flow model of crystallization.
    Achilles W; Freitag R; Kiss B; Riedmiller H
    J Urol; 1995 Oct; 154(4):1552-6. PubMed ID: 7658589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Citrate modulates calcium oxalate crystal growth by face-specific interactions.
    Grohe B; O'Young J; Langdon A; Karttunen M; Goldberg HA; Hunter GK
    Cells Tissues Organs; 2011; 194(2-4):176-81. PubMed ID: 21555861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning.
    Chien YC; Masica DL; Gray JJ; Nguyen S; Vali H; McKee MD
    J Biol Chem; 2009 Aug; 284(35):23491-501. PubMed ID: 19581305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization.
    Farmanesh S; Ramamoorthy S; Chung J; Asplin JR; Karande P; Rimer JD
    J Am Chem Soc; 2014 Jan; 136(1):367-76. PubMed ID: 24313314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy.
    Kazemi-Zanjani N; Chen H; Goldberg HA; Hunter GK; Grohe B; Lagugné-Labarthet F
    J Am Chem Soc; 2012 Oct; 134(41):17076-82. PubMed ID: 22991940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals.
    Thurgood LA; Wang T; Chataway TK; Ryall RL
    J Proteome Res; 2010 Sep; 9(9):4745-57. PubMed ID: 20672853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adhesion between molecules and calcium oxalate crystals: critical interactions in kidney stone formation.
    Sheng X; Ward MD; Wesson JA
    J Am Chem Soc; 2003 Mar; 125(10):2854-5. PubMed ID: 12617634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of macromolecules in the formation of kidney stones.
    Rimer JD; Kolbach-Mandel AM; Ward MD; Wesson JA
    Urolithiasis; 2017 Feb; 45(1):57-74. PubMed ID: 27913854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide.
    Grohe B; O'Young J; Ionescu DA; Lajoie G; Rogers KA; Karttunen M; Goldberg HA; Hunter GK
    J Am Chem Soc; 2007 Dec; 129(48):14946-51. PubMed ID: 17994739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteopontin and calcium stone formation.
    Kleinman JG; Wesson JA; Hughes J
    Nephron Physiol; 2004; 98(2):p43-7. PubMed ID: 15499214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of the effects of different substances on the early stages of papillary stone formation.
    Grases F; Garcia-Ferragut L; Costa-Bauzá A; March JG
    Nephron; 1996; 73(4):561-8. PubMed ID: 8856252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Establishment of a novel colorimetric assay for high-throughput analysis of calcium oxalate crystal growth modulation.
    Chutipongtanate S; Thongboonkerd V
    Analyst; 2010 Jun; 135(6):1309-14. PubMed ID: 20498879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human kidney stone matrix: Latent potential to restrain COM induced cytotoxicity and inflammatory response.
    Narula S; Tandon S; Baligar P; Singh SK; Tandon C
    Chem Biol Interact; 2017 Dec; 278():114-122. PubMed ID: 29054323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation of osteopontin is required for inhibition of calcium oxalate crystallization.
    Wang L; Guan X; Tang R; Hoyer JR; Wierzbicki A; De Yoreo JJ; Nancollas GH
    J Phys Chem B; 2008 Jul; 112(30):9151-7. PubMed ID: 18611047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Renal tubular cell membranes inhibit growth but promote aggregation of calcium oxalate monohydrate crystals.
    Chutipongtanate S; Thongboonkerd V
    Chem Biol Interact; 2010 Dec; 188(3):421-6. PubMed ID: 20797392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of human uropontin to inhibition of calcium oxalate crystallization.
    Asplin JR; Arsenault D; Parks JH; Coe FL; Hoyer JR
    Kidney Int; 1998 Jan; 53(1):194-9. PubMed ID: 9453018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions.
    Grohe B; Taller A; Vincent PL; Tieu LD; Rogers KA; Heiss A; Sørensen ES; Mittler S; Goldberg HA; Hunter GK
    Langmuir; 2009 Oct; 25(19):11635-46. PubMed ID: 19725562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.