BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 14767058)

  • 1. Microtubule plus-end dynamics in Xenopus egg extract spindles.
    Tirnauer JS; Salmon ED; Mitchison TJ
    Mol Biol Cell; 2004 Apr; 15(4):1776-84. PubMed ID: 14767058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles.
    Mitchison TJ; Maddox P; Gaetz J; Groen A; Shirasu M; Desai A; Salmon ED; Kapoor TM
    Mol Biol Cell; 2005 Jun; 16(6):3064-76. PubMed ID: 15788560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles.
    Gaetz J; Kapoor TM
    J Cell Biol; 2004 Aug; 166(4):465-71. PubMed ID: 15314063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method reveals microtubule minus ends throughout the meiotic spindle.
    Burbank KS; Groen AC; Perlman ZE; Fisher DS; Mitchison TJ
    J Cell Biol; 2006 Nov; 175(3):369-75. PubMed ID: 17088423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation and transport organize microtubules in metaphase spindles.
    Brugués J; Nuzzo V; Mazur E; Needleman DJ
    Cell; 2012 Apr; 149(3):554-64. PubMed ID: 22541427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational model predicts Xenopus meiotic spindle organization.
    Loughlin R; Heald R; Nédélec F
    J Cell Biol; 2010 Dec; 191(7):1239-49. PubMed ID: 21173114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaphase A chromosome movement and poleward spindle microtubule flux occur At similar rates in Xenopus extract spindles.
    Desai A; Maddox PS; Mitchison TJ; Salmon ED
    J Cell Biol; 1998 May; 141(3):703-13. PubMed ID: 9566970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eg5 causes elongation of meiotic spindles when flux-associated microtubule depolymerization is blocked.
    Shirasu-Hiza M; Perlman ZE; Wittmann T; Karsenti E; Mitchison TJ
    Curr Biol; 2004 Nov; 14(21):1941-5. PubMed ID: 15530396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonredundant functions of Kinesin-13s during meiotic spindle assembly.
    Ohi R; Burbank K; Liu Q; Mitchison TJ
    Curr Biol; 2007 Jun; 17(11):953-9. PubMed ID: 17509883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics.
    Maddox P; Straight A; Coughlin P; Mitchison TJ; Salmon ED
    J Cell Biol; 2003 Aug; 162(3):377-82. PubMed ID: 12900391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic EB1 inactivation shortens metaphase spindles by disrupting cortical force-producing interactions with astral microtubules.
    Dema A; van Haren J; Wittmann T
    Curr Biol; 2022 Mar; 32(5):1197-1205.e4. PubMed ID: 35090591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Length control of the metaphase spindle.
    Goshima G; Wollman R; Stuurman N; Scholey JM; Vale RD
    Curr Biol; 2005 Nov; 15(22):1979-88. PubMed ID: 16303556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poleward microtubule flux mitotic spindles assembled in vitro.
    Sawin KE; Mitchison TJ
    J Cell Biol; 1991 Mar; 112(5):941-54. PubMed ID: 1999464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules.
    Tirnauer JS; Grego S; Salmon ED; Mitchison TJ
    Mol Biol Cell; 2002 Oct; 13(10):3614-26. PubMed ID: 12388761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development.
    Lane JD; Allan VJ
    Mol Biol Cell; 1999 Jun; 10(6):1909-22. PubMed ID: 10359605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux.
    Fu J; Bian M; Xin G; Deng Z; Luo J; Guo X; Chen H; Wang Y; Jiang Q; Zhang C
    J Cell Biol; 2015 Aug; 210(3):373-83. PubMed ID: 26240182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial variation of microtubule depolymerization in large asters.
    Ishihara K; Decker F; Caldas P; Pelletier JF; Loose M; Brugués J; Mitchison TJ
    Mol Biol Cell; 2021 Apr; 32(9):869-879. PubMed ID: 33439671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EB1 targets to kinetochores with attached, polymerizing microtubules.
    Tirnauer JS; Canman JC; Salmon ED; Mitchison TJ
    Mol Biol Cell; 2002 Dec; 13(12):4308-16. PubMed ID: 12475954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay of the N- and C-terminal domains of MCAK control microtubule depolymerization activity and spindle assembly.
    Ems-McClung SC; Hertzer KM; Zhang X; Miller MW; Walczak CE
    Mol Biol Cell; 2007 Jan; 18(1):282-94. PubMed ID: 17093055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle.
    Yang G; Cameron LA; Maddox PS; Salmon ED; Danuser G
    J Cell Biol; 2008 Aug; 182(4):631-9. PubMed ID: 18710922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.