These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 14767250)

  • 61. Secondary gait compensations in individuals without neuromuscular involvement following a unilateral imposed equinus constraint.
    Goodman MJ; Menown JL; West JM; Barr KM; Vander Linden DW; McMulkin ML
    Gait Posture; 2004 Dec; 20(3):238-44. PubMed ID: 15531170
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface.
    Fong DT; Mao DW; Li JX; Hong Y
    J Biomech; 2008; 41(4):838-44. PubMed ID: 18068710
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Lower limb mechanics during moderate high-heel jogging and running in different experienced wearers.
    Fu F; Zhang Y; Shu Y; Ruan G; Sun J; Baker JS; Gu Y
    Hum Mov Sci; 2016 Aug; 48():15-27. PubMed ID: 27101561
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Investigating the Effects of Knee Flexion during the Eccentric Heel-Drop Exercise.
    Weinert-Aplin RA; Bull AM; McGregor AH
    J Sports Sci Med; 2015 Jun; 14(2):459-65. PubMed ID: 25983597
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biomechanical characteristics of barefoot footstrike modalities.
    Nunns M; House C; Fallowfield J; Allsopp A; Dixon S
    J Biomech; 2013 Oct; 46(15):2603-10. PubMed ID: 24054331
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.
    Jenkyn TR; Hunt MA; Jones IC; Giffin JR; Birmingham TB
    J Biomech; 2008; 41(2):276-83. PubMed ID: 18061197
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparison of longitudinal biomechanical adaptation to shoe degradation between the dominant and non-dominant legs during running.
    Kong PW; Candelaria NG; Smith D
    Hum Mov Sci; 2011 Jun; 30(3):606-13. PubMed ID: 21333368
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biomechanical analysis of running in military boots with new and degraded insoles.
    Dixon SJ; Waterworth C; Smith CV; House CM
    Med Sci Sports Exerc; 2003 Mar; 35(3):472-9. PubMed ID: 12618578
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures.
    Zifchock RA; Davis I; Hamill J
    J Biomech; 2006; 39(15):2792-7. PubMed ID: 16289516
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effect of foot type on in-shoe plantar pressure during walking and running.
    Chuckpaiwong B; Nunley JA; Mall NA; Queen RM
    Gait Posture; 2008 Oct; 28(3):405-11. PubMed ID: 18337103
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Loading characteristics of females exhibiting excessive valgus moments during cutting.
    Sigward SM; Powers CM
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):827-33. PubMed ID: 17531364
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The influence of lateral heel flare of running shoes on pronation and impact forces.
    Nigg BM; Morlock M
    Med Sci Sports Exerc; 1987 Jun; 19(3):294-302. PubMed ID: 3600244
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Inter-segmental coordination: motor pattern in humans stepping over an obstacle with mechanical ankle joint friction.
    Gueguen N; Charbonneau M; Robert G; Coyle T; Prince F; Mouchnino L
    J Biomech; 2005 Jul; 38(7):1491-500. PubMed ID: 15922760
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gait-related intrinsic risk factors for patellofemoral pain in novice recreational runners.
    Thijs Y; De Clercq D; Roosen P; Witvrouw E
    Br J Sports Med; 2008 Jun; 42(6):466-71. PubMed ID: 18397970
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Altered Vertical Ground Reaction Forces in Participants With Chronic Ankle Instability While Running.
    Bigouette J; Simon J; Liu K; Docherty CL
    J Athl Train; 2016 Sep; 51(9):682-687. PubMed ID: 27813684
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multi-criterion optimization for heel-toe running.
    Wang N
    J Biomech; 2005 Aug; 38(8):1712-6. PubMed ID: 15958229
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Short- and long-term influences of a custom foot orthotic intervention on lower extremity dynamics.
    MacLean CL; Davis IS; Hamill J
    Clin J Sport Med; 2008 Jul; 18(4):338-43. PubMed ID: 18614885
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pressure plate analysis of toe-heel and medio-lateral hoof balance at the walk and trot in sound sport horses.
    Oosterlinck M; Hardeman LC; van der Meij BR; Veraa S; van der Kolk JH; Wijnberg ID; Pille F; Back W
    Vet J; 2013 Dec; 198 Suppl 1():e9-13. PubMed ID: 24140228
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
    Daley MA; Usherwood JR; Felix G; Biewener AA
    J Exp Biol; 2006 Jan; 209(Pt 1):171-87. PubMed ID: 16354788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.