These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 14768021)
1. Evaluation of some fungi and bacteria for biocontrol of anthracnose disease of cowpea. Adebanjo A; Bankole SA J Basic Microbiol; 2004; 44(1):3-9. PubMed ID: 14768021 [TBL] [Abstract][Full Text] [Related]
2. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Mohammadipour M; Mousivand M; Salehi Jouzani G; Abbasalizadeh S Can J Microbiol; 2009 Apr; 55(4):395-404. PubMed ID: 19396239 [TBL] [Abstract][Full Text] [Related]
3. Fungal control of pathogenic fungi isolated from wild plants in Taif Governorate, Saudia Arabia. Abou-Zeid AM; Altalhi AD; Abd El-Fattah RI Roum Arch Microbiol Immunol; 2007; 66(3-4):90-6. PubMed ID: 18928069 [TBL] [Abstract][Full Text] [Related]
4. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut. Kishore GK; Pande S; Podile AR Can J Microbiol; 2005 Feb; 51(2):123-32. PubMed ID: 16091770 [TBL] [Abstract][Full Text] [Related]
5. Screening of bioagents against root rot of mung bean caused by Rhizoctonia solani. Singh S; Chand H Commun Agric Appl Biol Sci; 2006; 71(4):33-5. PubMed ID: 17612349 [TBL] [Abstract][Full Text] [Related]
6. Potential of plant extracts in combination with bacterial antagonist treatment as biocontrol agent of red rot of sugarcane. Jayakumar V; Bhaskaran R; Tsushima S Can J Microbiol; 2007 Feb; 53(2):196-206. PubMed ID: 17496967 [TBL] [Abstract][Full Text] [Related]
7. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
9. Control of foliar diseases of mustard by Bacillus from reclaimed soil. Sharma N; Sharma S Microbiol Res; 2008; 163(4):408-13. PubMed ID: 16870414 [TBL] [Abstract][Full Text] [Related]
10. Potential of Trichoderma species on Helminthosporium causing leaf spot on cane palm, Chrysalidocarpus lutescens. Jegathambigai V; Karunaratne MD; Svinningen A; Mikunthan G Commun Agric Appl Biol Sci; 2008; 73(2):207-16. PubMed ID: 19226758 [TBL] [Abstract][Full Text] [Related]
11. [Application of Bacillus-antagonists for biocontrol of fungi degrading raw wood]. Melent'ev AI; Helisto P; Kuz'mina LIu; Galimzianova NF; Aktuganov GE; Korpela T Prikl Biokhim Mikrobiol; 2006; 42(1):70-5. PubMed ID: 16521580 [TBL] [Abstract][Full Text] [Related]
12. Effect of fungicides and of biocontrol agents against powdery mildew of turnip. Gilardi G; Gullino ML; Garibaldi A Commun Agric Appl Biol Sci; 2008; 73(2):21-9. PubMed ID: 19226738 [TBL] [Abstract][Full Text] [Related]
13. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Brunner K; Zeilinger S; Ciliento R; Woo SL; Lorito M; Kubicek CP; Mach RL Appl Environ Microbiol; 2005 Jul; 71(7):3959-65. PubMed ID: 16000810 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the potential of Trichoderma viride in the control of fungal pathogens of Roselle (Hibiscus sabdariffa L.) in vitro. Eslaminejad Parizi T; Ansaria M; Elaminejad T Microb Pathog; 2012 Apr; 52(4):201-5. PubMed ID: 22261114 [TBL] [Abstract][Full Text] [Related]
15. Biotic relation between Fusarium oxysporum schlecht. and fungi isolated from the substrate of Stewartia pseudocamellia (max.). Kurzawińska H; Duda J Commun Agric Appl Biol Sci; 2005; 70(3):185-8. PubMed ID: 16637175 [TBL] [Abstract][Full Text] [Related]
16. [Characterization of a bacterial biocontrol strain 1404 and its efficacy in controlling postharvest citrus anthracnose]. Wang Q; Hu C; Ke F; Huang S; Li Q Wei Sheng Wu Xue Bao; 2010 Sep; 50(9):1208-17. PubMed ID: 21090261 [TBL] [Abstract][Full Text] [Related]
17. Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea. Zayed G; Abdel-Motaal H Bioresour Technol; 2005 May; 96(8):929-35. PubMed ID: 15627564 [TBL] [Abstract][Full Text] [Related]
18. Biological control of Tiarosporella phaseolina the causal agent of charcoal rot of soybean. Sharifi-Tehrani A; Shakiba M; Okhovat M; Zakeri Z Commun Agric Appl Biol Sci; 2005; 70(3):189-92. PubMed ID: 16637176 [TBL] [Abstract][Full Text] [Related]
19. Organic amendments and control of foot rot of Piper betle caused by Phytophthora parasitica var. piperina. Mehrotra RS; Tiwari DP Ann Microbiol (Paris); 1976 Apr; 127(3):415-21. PubMed ID: 952442 [TBL] [Abstract][Full Text] [Related]
20. Integration of soil application and seed treatment formulations of Trichoderma species for management of wet root rot of mungbean caused by Rhizoctonia solani. Dubey SC; Bhavani R; Singh B Pest Manag Sci; 2011 Sep; 67(9):1163-8. PubMed ID: 21480467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]