BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14768553)

  • 1. [Quantitative isolation of microbial DNA from the different types of soils of natural and agricultural ecosystems].
    Blagodatskaia EV; Blagodatskiĭ SA; Anderson TH
    Mikrobiologiia; 2003; 72(6):840-6. PubMed ID: 14768553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Extractable microbial DNA pool and microbial activity in paleosols of Southern Ural].
    Blagodatskaia EV; Khokhlova OS; Anderson TH; Blagodatskiĭ SA
    Mikrobiologiia; 2003; 72(6):847-53. PubMed ID: 14768554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices.
    Dilly O; Blume HP; Sehy U; Jimenez M; Munch JC
    Chemosphere; 2003 Jul; 52(3):557-69. PubMed ID: 12738293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs.
    Zhang WJ; Zhu W; Hu S
    J Environ Sci (China); 2005; 17(5):705-10. PubMed ID: 16312988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils.
    Ranjard L; Echairi A; Nowak V; Lejon DP; Nouaïm R; Chaussod R
    FEMS Microbiol Ecol; 2006 Nov; 58(2):303-15. PubMed ID: 17064271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area.
    Liao M; Chen CL; Huang CY
    J Environ Sci (China); 2005; 17(5):832-7. PubMed ID: 16313013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil.
    Shrestha RK; Lal R
    Environ Int; 2006 Aug; 32(6):781-96. PubMed ID: 16797072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ranking the magnitude of crop and farming system effects on soil microbial biomass and genetic structure of bacterial communities.
    Hartmann M; Fliessbach A; Oberholzer HR; Widmer F
    FEMS Microbiol Ecol; 2006 Sep; 57(3):378-88. PubMed ID: 16907752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils.
    Barajas-Aceves M
    Bioresour Technol; 2005 Aug; 96(12):1405-14. PubMed ID: 15792589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of elevated atmospheric CO2 concentrations on soil microorganisms.
    Freeman C; Kim SY; Lee SH; Kang H
    J Microbiol; 2004 Dec; 42(4):267-77. PubMed ID: 15650682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectomycorrhizal fungi: exploring the mycelial frontier.
    Anderson IC; Cairney JW
    FEMS Microbiol Rev; 2007 Jul; 31(4):388-406. PubMed ID: 17466031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial activity in pig slurry-amended soils under aerobic incubation.
    Plaza C; García-Gil JC; Polo A
    Biodegradation; 2007 Apr; 18(2):159-65. PubMed ID: 16758274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization.
    Lagomarsino A; Moscatelli MC; De Angelis P; Grego S
    Sci Total Environ; 2006 Dec; 372(1):256-65. PubMed ID: 17023027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies.
    Treseder KK
    Ecol Lett; 2008 Oct; 11(10):1111-20. PubMed ID: 18673384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biological quality index for volcanic Andisols and Aridisols (Canary Islands, Spain): variations related to the ecosystem degradation.
    Armas CM; Santana B; Mora JL; Notario JS; Arbelo CD; Rodríguez-Rodríguez A
    Sci Total Environ; 2007 May; 378(1-2):238-44. PubMed ID: 17316768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils.
    Wallenstein MD; McMahon S; Schimel J
    FEMS Microbiol Ecol; 2007 Feb; 59(2):428-35. PubMed ID: 17313585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt.
    Lipson DA; Schadt CW; Schmidt SK
    Microb Ecol; 2002 Apr; 43(3):307-14. PubMed ID: 12037609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of fungal, bacterial and ureolytic communities to synthetic sheep urine deposition in a grassland soil.
    Singh BK; Nunan N; Millard P
    FEMS Microbiol Ecol; 2009 Oct; 70(1):109-17. PubMed ID: 19622069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.
    Khan KS; Joergensen RG
    Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in lead availability affect bacterial community structure but not basal respiration in a microcosm study with forest soils.
    Lazzaro A; Schulin R; Widmer F; Frey B
    Sci Total Environ; 2006 Dec; 371(1-3):110-24. PubMed ID: 17023024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.