These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 14768574)
1. [Biotoxicity of zinc in the marine sediment to amphipod Grandidierella japonica]. Han J; Ma D; Yan Q; Wang J; Xu D; Chen S; Chen H; Yan J Huan Jing Ke Xue; 2003 Nov; 24(6):101-5. PubMed ID: 14768574 [TBL] [Abstract][Full Text] [Related]
2. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence. Fairchild JF; Kemble NE; Allert AL; Brumbaugh WG; Ingersoll CG; Dowling B; Gruenenfelder C; Roland JL Arch Environ Contam Toxicol; 2012 Jul; 63(1):54-68. PubMed ID: 22402778 [TBL] [Abstract][Full Text] [Related]
3. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA. Ingersoll CG; MacDonald DD; Brumbaugh WG; Johnson BT; Kemble NE; Kunz JL; May TW; Wang N; Smith JR; Sparks DW; Ireland DS Arch Environ Contam Toxicol; 2002 Aug; 43(2):156-67. PubMed ID: 12115041 [TBL] [Abstract][Full Text] [Related]
4. Contrasting effects of bioturbation on metal toxicity of contaminated sediments results in misleading interpretation of the AVS-SEM metal-sulfide paradigm. Remaili TM; Yin N; Bennett WW; Simpson SL; Jolley DF; Welsh DT Environ Sci Process Impacts; 2018 Sep; 20(9):1285-1296. PubMed ID: 30175344 [TBL] [Abstract][Full Text] [Related]
5. Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. Simpson SL; Ward D; Strom D; Jolley DF Chemosphere; 2012 Aug; 88(8):953-61. PubMed ID: 22494530 [TBL] [Abstract][Full Text] [Related]
6. Sediment Zn-release during post-drought re-flooding: Assessing environmental risk to Hyalella azteca and Daphnia magna. Nedrich SM; Burton GA Environ Pollut; 2017 Nov; 230():1116-1124. PubMed ID: 28800684 [TBL] [Abstract][Full Text] [Related]
7. Hyporheic Interactions Increase Zinc Exposure and Effects on Hyalella azteca in Sediments under Flow-Through Conditions. Harrison AM; Hudson ML; Burton GA Environ Toxicol Chem; 2019 Nov; 38(11):2447-2458. PubMed ID: 31369691 [TBL] [Abstract][Full Text] [Related]
8. Influence of acid volatile sulfides and simultaneously extracted metals on the bioavailability and toxicity of a mixture of sediment-associated Cd, Ni, and Zn to polychaetes Neanthes arenaceodentata. Lee JS; Lee JH Sci Total Environ; 2005 Feb; 338(3):229-41. PubMed ID: 15713331 [TBL] [Abstract][Full Text] [Related]
9. Effects of sediment geochemical properties on the toxicity of copper-spiked sediments to the marine amphipod Gammarus locusta. Correia AD; Costa MH Sci Total Environ; 2000 Mar; 247(2-3):99-106. PubMed ID: 10803538 [TBL] [Abstract][Full Text] [Related]
10. Field validation of sediment zinc toxicity. Burton GA; Nguyen LT; Janssen C; Baudo R; McWilliam R; Bossuyt B; Beltrami M; Green A Environ Toxicol Chem; 2005 Mar; 24(3):541-53. PubMed ID: 15779753 [TBL] [Abstract][Full Text] [Related]
11. Nickel partitioning in formulated and natural freshwater sediments. Doig LE; Liber K Chemosphere; 2006 Feb; 62(6):968-79. PubMed ID: 16122779 [TBL] [Abstract][Full Text] [Related]
12. Single versus combined exposure of Hyalella azteca to zinc contaminated sediment and food. Nguyen LT; Muyssen BT; Janssen CR Chemosphere; 2012 Mar; 87(1):84-90. PubMed ID: 22197310 [TBL] [Abstract][Full Text] [Related]
13. Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. King CK; Gale SA; Hyne RV; Stauber JL; Simpson SL; Hickey CW Chemosphere; 2006 Jun; 63(9):1466-76. PubMed ID: 16289287 [TBL] [Abstract][Full Text] [Related]
14. Predicting the toxicity of chromium in sediments. Berry WJ; Boothman WS; Serbst JR; Edwards PA Environ Toxicol Chem; 2004 Dec; 23(12):2981-92. PubMed ID: 15648774 [TBL] [Abstract][Full Text] [Related]
15. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca. Besser JM; Brumbaugh WG; Kemble NE; May TW; Ingersoll CG Environ Sci Technol; 2004 Dec; 38(23):6210-6. PubMed ID: 15597873 [TBL] [Abstract][Full Text] [Related]
16. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Prica M; Dalmacija B; Roncević S; Krcmar D; Becelić M Sci Total Environ; 2008 Jan; 389(2-3):235-44. PubMed ID: 17936333 [TBL] [Abstract][Full Text] [Related]
17. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water. Besser JM; Brumbaugh WG; Allert AL; Poulton BC; Schmitt CJ; Ingersoll CG Ecotoxicol Environ Saf; 2009 Feb; 72(2):516-26. PubMed ID: 18603298 [TBL] [Abstract][Full Text] [Related]
18. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod. Hanna SK; Miller RJ; Zhou D; Keller AA; Lenihan HS Aquat Toxicol; 2013 Oct; 142-143():441-6. PubMed ID: 24121101 [TBL] [Abstract][Full Text] [Related]
19. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments. Ogendi GM; Brumbaugh WG; Hannigan RE; Farris JL Environ Toxicol Chem; 2007 Feb; 26(2):325-34. PubMed ID: 17713221 [TBL] [Abstract][Full Text] [Related]
20. Acute toxicity bioassay with the amphipod, Grandidierella bonnieroides S. after exposure to sediments from an urban estuary (Macaé River Estuary, RJ, Brazil). Molisani MM; Costa RN; Cunha P; de Rezende CE; Ferreira MI; de Assis Esteves F Bull Environ Contam Toxicol; 2013 Jan; 90(1):79-84. PubMed ID: 23124519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]