These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 14768869)

  • 21. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia.
    Santore RC; Di Toro DM; Paquin PR; Allen HE; Meyer JS
    Environ Toxicol Chem; 2001 Oct; 20(10):2397-402. PubMed ID: 11596775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of multigeneration acclimation to copper on tolerance, energy reserves, and homeostasis of Daphnia magna straus.
    Bossuyt BT; Janssen CR
    Environ Toxicol Chem; 2004 Aug; 23(8):2029-37. PubMed ID: 15352494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicity of copper in sewage sludge.
    FjÀllborg B; Dave G
    Environ Int; 2003 Mar; 28(8):761-9. PubMed ID: 12605925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance of calcium in modifying the acute toxicity of sodium sulphate to Hyalella azteca and Daphnia magna.
    Davies TD; Hall KJ
    Environ Toxicol Chem; 2007 Jun; 26(6):1243-7. PubMed ID: 17571691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of a biotic ligand model on site-specific copper toxicity to Daphnia magna in the Yeongsan River, Korea.
    Park J; Ra JS; Rho H; Cho J; Kim SD
    Ecotoxicol Environ Saf; 2018 Mar; 149():108-115. PubMed ID: 29154134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speciation of copper in sewage effluents and its toxicity to Daphnia magna.
    van Veen E; Burton N; Comber S; Gardner M
    Environ Toxicol Chem; 2002 Feb; 21(2):275-80. PubMed ID: 11833795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia.
    Hyne RV; Pablo F; Julli M; Markich SJ
    Environ Toxicol Chem; 2005 Jul; 24(7):1667-75. PubMed ID: 16050583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper toxicity in Bristol Bay headwaters: Part 1-Acute mortality and ambient water quality criteria in low-hardness water.
    Morris JM; Brinkman SF; Carney MW; Lipton J
    Environ Toxicol Chem; 2019 Jan; 38(1):190-197. PubMed ID: 30125979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of copper on growth, reproduction, survival and haemoglobin in Daphnia magna.
    Dave G
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(2):439-43. PubMed ID: 6149094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The combined effects of hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to D. magna: development of a surface response model.
    Heijerick DG; Janssen CR; De Coen WM
    Arch Environ Contam Toxicol; 2003 Feb; 44(2):210-7. PubMed ID: 12520393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: development and validation of a biotic ligand model.
    Heijerick DG; De Schamphelaere KA; Janssen CR
    Environ Toxicol Chem; 2002 Jun; 21(6):1309-15. PubMed ID: 12069319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of water chemistry on the particle-specific toxicity of copper nanoparticles to Daphnia magna.
    Xiao Y; Peijnenburg WJGM; Chen G; Vijver MG
    Sci Total Environ; 2018 Jan; 610-611():1329-1335. PubMed ID: 28851153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zinc toxicity to the mottled sculpin (Cottus bairdi) in high-hardness water.
    Brinkman S; Woodling J
    Environ Toxicol Chem; 2005 Jun; 24(6):1515-7. PubMed ID: 16117130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined effects of water quality parameters on mixture toxicity of copper and chromium toward Daphnia magna.
    Jo HJ; Son J; Cho K; Jung J
    Chemosphere; 2010 Nov; 81(10):1301-7. PubMed ID: 20875667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper toxicity in relation to surface water-dissolved organic matter: biological effects to Daphnia magna.
    Kramer KJ; Jak RG; van Hattum B; Hooftman RN; Zwolsman JJ
    Environ Toxicol Chem; 2004 Dec; 23(12):2971-80. PubMed ID: 15648773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of hardness at varying pH on zinc toxicity and lability to a freshwater microalga,
    Price GAV; Stauber JL; Holland A; Koppel DJ; Van Genderen EJ; Ryan AC; Jolley DF
    Environ Sci Process Impacts; 2022 May; 24(5):783-793. PubMed ID: 35442258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH.
    de Schamphelaere KA; Janssen CR
    Environ Sci Technol; 2002 Jan; 36(1):48-54. PubMed ID: 11817370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of acute and chronic waterborne nickel toxicity in the freshwater cladoceran, Daphnia magna.
    Pane EF; Smith C; McGeer JC; Wood CM
    Environ Sci Technol; 2003 Oct; 37(19):4382-9. PubMed ID: 14572089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity.
    Yim JH; Kim KW; Kim SD
    J Hazard Mater; 2006 Nov; 138(1):16-21. PubMed ID: 16806685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.