These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14768890)

  • 1. Energy-based modeling as a basis for the analysis of reproductive data with the midge (Chironomus riparius).
    Ducrot V; Péry AR; Mons R; Garric J
    Environ Toxicol Chem; 2004 Jan; 23(1):225-31. PubMed ID: 14768890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model to understand the confounding effects of natural sediments in toxicity tests with Chironomus riparius.
    Péry AR; Sulmon V; Mons R; Flammarion P; Lagadic L; Garric J
    Environ Toxicol Chem; 2003 Oct; 22(10):2476-81. PubMed ID: 14552013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effects of copper and food on the midge Chironomus riparius in whole-sediment bioassays.
    de Haas EM; Léon Paumen M; Koelmans AA; Kraak MH
    Environ Pollut; 2004; 127(1):99-107. PubMed ID: 14553999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of copper on energy metabolism and larval development in the midge Chironomus riparius.
    Servia MJ; Péry AR; Heydorff M; Garric J; Lagadic L
    Ecotoxicology; 2006 Apr; 15(3):229-40. PubMed ID: 16557356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced viability of F1 egg ropes in Chironomus riparius exposed to di-2-ethylhexyl phthalate (DEHP).
    Kim EJ; Lee SK
    J Environ Biol; 2004 Jul; 25(3):259-61. PubMed ID: 15847332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the pyrethroid esfenvalerate on life-cycle traits and population dynamics of Chironomus riparius--importance of exposure scenario.
    Forbes VE; Cold A
    Environ Toxicol Chem; 2005 Jan; 24(1):78-86. PubMed ID: 15683170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life-cycle effects of sediment-associated 2,4,5-trichlorophenol on two groups of the midge Chironomus riparius with different exposure histories.
    Ristola T; Parker D; Kukkonen JV
    Environ Toxicol Chem; 2001 Aug; 20(8):1772-7. PubMed ID: 11491561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic models to perform population risk assessment with the midge Chironomus riparius: application to heavy metals.
    Péry AR; Geffard A; Garric J
    Environ Sci Technol; 2006 Oct; 40(19):6026-31. PubMed ID: 17051795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body residues: a key variable to analyze toxicity tests with Chironomus riparius exposed to copper-spiked sediments.
    Péry AR; Béthune A; Gahou J; Mons R; Garric J
    Ecotoxicol Environ Saf; 2005 Jun; 61(2):160-7. PubMed ID: 15883089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deriving effects on Chironomus population carrying capacity from standard toxicity tests.
    Péry AR; Babut MP; Mons R; Garric J
    Environ Toxicol Chem; 2006 Jan; 25(1):144-8. PubMed ID: 16494235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modeling approach to link food availability, growth, emergence, and reproduction for the midge Chironomus riparius.
    Péry AR; Mons R; Flammarion P; Lagadic L; Garric J
    Environ Toxicol Chem; 2002 Nov; 21(11):2507-13. PubMed ID: 12389933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-based modeling to study population growth rate and production for the midge Chironomus riparius in ecotoxicological risk assessment.
    Péry AR; Mons R; Garric J
    Ecotoxicology; 2004 Oct; 13(7):647-56. PubMed ID: 15673214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling toxicity and mode of action of chemicals to analyse growth and emergence tests with the midge Chironomus riparius.
    Péry AR; Ducrot V; Mons R; Garric J
    Aquat Toxicol; 2003 Nov; 65(3):281-92. PubMed ID: 13678847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of simulated CO₂ escape from sediments on the development of midge Chironomus riparius.
    Khosrovyan A; DelValls TA; Riba I
    Aquat Toxicol; 2014 Nov; 156():230-9. PubMed ID: 25265051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of the nonbiting midge Chironomus riparius to multigeneration toxicant exposure.
    Marinković M; de Bruijn K; Asselman M; Bogaert M; Jonker MJ; Kraak MH; Admiraal W
    Environ Sci Technol; 2012 Nov; 46(21):12105-11. PubMed ID: 23050692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and morphological responses in Chironomus riparius (Diptera, Chironomidae) larvae exposed to lead-spiked sediment.
    Arambourou H; Gismondi E; Branchu P; Beisel JN
    Environ Toxicol Chem; 2013 Nov; 32(11):2558-64. PubMed ID: 23893569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual-based model of Chironomus riparius population dynamics over several generations to explore adaptation following exposure to uranium-spiked sediments.
    Beaudouin R; Dias V; Bonzom JM; Péry A
    Ecotoxicology; 2012 May; 21(4):1225-39. PubMed ID: 22396021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera): baseline experiments for future multi-generation studies.
    Vogt C; Belz D; Galluba S; Nowak C; Oetken M; Oehlmann J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jan; 42(1):1-9. PubMed ID: 17129941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the risk of metal mixtures in contaminated sediments on Chironomus riparius based on cytosolic accumulation.
    Péry AR; Geffard A; Conrad A; Mons R; Garric J
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):869-73. PubMed ID: 18514899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chronic effects of fullereneC
    Waissi GC; Väänänen K; Nybom I; Pakarinen K; Akkanen J; Leppänen MT; Kukkonen JVK
    Environ Pollut; 2017 Oct; 229():423-430. PubMed ID: 28622662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.