These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 14768911)
1. Retention and release behavior of insulin in chitosan gel beads. Kofuji K; Akamine H; Oshirabe H; Maeda Y; Murata Y; Kawashima S J Biomater Sci Polym Ed; 2003; 14(11):1243-53. PubMed ID: 14768911 [TBL] [Abstract][Full Text] [Related]
2. The controlled release of a drug from biodegradable chitosan gel beads. Kofuji K; Ito T; Murata Y; Kawashima S Chem Pharm Bull (Tokyo); 2000 Apr; 48(4):579-81. PubMed ID: 10783085 [TBL] [Abstract][Full Text] [Related]
3. Therapeutic efficacy of sustained drug release from chitosan gel on local inflammation. Kofuji K; Akamine H; Qian CJ; Watanabe K; Togan Y; Nishimura M; Sugiyama I; Murata Y; Kawashima S Int J Pharm; 2004 Mar; 272(1-2):65-78. PubMed ID: 15019070 [TBL] [Abstract][Full Text] [Related]
4. Effect of chondroitin sulfate on the biodegradation and drug release of chitosan gel beads in subcutaneous air pouches of mice. Kofuji K; Ito T; Murata Y; Kawashima S Biol Pharm Bull; 2002 Feb; 25(2):268-71. PubMed ID: 11853181 [TBL] [Abstract][Full Text] [Related]
5. Sustained insulin release with biodegradation of chitosan gel beads prepared by copper ions. Kofuji K; Murata Y; Kawashima S Int J Pharm; 2005 Oct; 303(1-2):95-103. PubMed ID: 16139972 [TBL] [Abstract][Full Text] [Related]
6. Biodegradation and drug release of chitosan gel beads in subcutaneous air pouches of mice. Kofuji K; Ito T; Murata Y; Kawashima S Biol Pharm Bull; 2001 Feb; 24(2):205-8. PubMed ID: 11217095 [TBL] [Abstract][Full Text] [Related]
7. Preparation and drug retention of biodegradable chitosan gel beads. Kofuji K; Shibata K; Murata Y; Miyamoto E; Kawashima S Chem Pharm Bull (Tokyo); 1999 Oct; 47(10):1494-6. PubMed ID: 10553646 [TBL] [Abstract][Full Text] [Related]
8. Behavior of alginate gel beads containing chitosan salt prepared with water-soluble vitamins. Murata Y; Kontani Y; Ohmae H; Kawashima S Eur J Pharm Biopharm; 2002 Mar; 53(2):249-51. PubMed ID: 11880010 [TBL] [Abstract][Full Text] [Related]
9. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Shu XZ; Zhu KJ Int J Pharm; 2002 Feb; 233(1-2):217-25. PubMed ID: 11897426 [TBL] [Abstract][Full Text] [Related]
10. Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Tahtat D; Mahlous M; Benamer S; Khodja AN; Oussedik-Oumehdi H; Laraba-Djebari F Int J Biol Macromol; 2013 Jul; 58():160-8. PubMed ID: 23567292 [TBL] [Abstract][Full Text] [Related]
11. The controlled release of insulin-mimetic metal ions by the multifunction of chitosan. Kofuji K; Qian CJ; Murata Y; Kawashima S J Inorg Biochem; 2005 Jun; 99(6):1329-34. PubMed ID: 15917087 [TBL] [Abstract][Full Text] [Related]
12. Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Xu Y; Zhan C; Fan L; Wang L; Zheng H Int J Pharm; 2007 May; 336(2):329-37. PubMed ID: 17223290 [TBL] [Abstract][Full Text] [Related]
13. Chitosan/polyethylene glycol beads crosslinked with tripolyphosphate and glutaraldehyde for gastrointestinal drug delivery. Buranachai T; Praphairaksit N; Muangsin N AAPS PharmSciTech; 2010 Sep; 11(3):1128-37. PubMed ID: 20652459 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of iron-crosslinked chitosan succinate and iron-crosslinked hydroxamated chitosan succinate and their in vitro evaluation as potential matrix materials for oral theophylline sustained-release beads. Aiedeh K; Taha MO Eur J Pharm Sci; 2001 May; 13(2):159-68. PubMed ID: 11297900 [TBL] [Abstract][Full Text] [Related]
15. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Shu XZ; Zhu KJ Int J Pharm; 2000 May; 201(1):51-8. PubMed ID: 10867264 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of melatonin-loaded stearyl alcohol microspheres. Lee BJ; Choe JS; Kim CK J Microencapsul; 1998; 15(6):775-87. PubMed ID: 9818955 [TBL] [Abstract][Full Text] [Related]
17. One pot synthesis of new poly(vinyl alcohol) blended natural polymer based magnetic hydrogel beads: Controlled natural anticancer alkaloid delivery system. Kesavan MP; Ayyanaar S; Lenin N; Sankarganesh M; Dhaveethu Raja J; Rajesh J J Biomed Mater Res A; 2018 Feb; 106(2):543-551. PubMed ID: 28984081 [TBL] [Abstract][Full Text] [Related]
18. pH-sensitive gallol-rich chitosan hydrogel beads for on-off controlled drug delivery. Park GR; Gwak MA; Choi YH; Park WH Int J Biol Macromol; 2023 Jun; 240():124346. PubMed ID: 37028624 [TBL] [Abstract][Full Text] [Related]
19. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: A review. Shi W; Ching YC; Chuah CH Int J Biol Macromol; 2021 Feb; 170():751-767. PubMed ID: 33412201 [TBL] [Abstract][Full Text] [Related]
20. Preparation of alginate gel beads containing chitosan nicotinic acid salt and the functions. Murata Y; Toniwa S; Miyamoto E; Kawashima S Eur J Pharm Biopharm; 1999 Jul; 48(1):49-52. PubMed ID: 10477328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]