These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 14769031)
1. Carbon monoxide dehydrogenase from Rhodospirillum rubrum: effect of redox potential on catalysis. Feng J; Lindahl PA Biochemistry; 2004 Feb; 43(6):1552-9. PubMed ID: 14769031 [TBL] [Abstract][Full Text] [Related]
2. Redox-dependent CO2 reduction activity of CO dehydrogenase from Rhodospirillum rubrum. Heo J; Staples CR; Ludden PW Biochemistry; 2001 Jun; 40(25):7604-11. PubMed ID: 11412114 [TBL] [Abstract][Full Text] [Related]
3. Stoichiometric CO reductive titrations of acetyl-CoA synthase (Carbon monoxide dehydrogenase) from Clostridium thermoaceticum. Fraser DM; Lindahl PA Biochemistry; 1999 Nov; 38(48):15697-705. PubMed ID: 10625435 [TBL] [Abstract][Full Text] [Related]
4. Spectroscopic studies of nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: nature of the iron-sulfur clusters. Craft JL; Ludden PW; Brunold TC Biochemistry; 2002 Feb; 41(5):1681-8. PubMed ID: 11814363 [TBL] [Abstract][Full Text] [Related]
5. Effect of sodium sulfide on Ni-containing carbon monoxide dehydrogenases. Feng J; Lindahl PA J Am Chem Soc; 2004 Jul; 126(29):9094-100. PubMed ID: 15264843 [TBL] [Abstract][Full Text] [Related]
6. Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum. Heo J; Halbleib CM; Ludden PW Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7690-3. PubMed ID: 11416171 [TBL] [Abstract][Full Text] [Related]
7. Spectroelectrochemical characterization of the metal centers in carbon monoxide dehydrogenase (CODH) and nickel-deficient CODH from Rhodospirillum rubrum. Spangler NJ; Lindahl PA; Bandarian V; Ludden PW J Biol Chem; 1996 Apr; 271(14):7973-7. PubMed ID: 8626477 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a proposed intermediate redox state in the CO/CO(2) active site of acetyl-CoA synthase (Carbon monoxide dehydrogenase) from Clostridium thermoaceticum. Fraser DM; Lindahl PA Biochemistry; 1999 Nov; 38(48):15706-11. PubMed ID: 10625436 [TBL] [Abstract][Full Text] [Related]
9. New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster. Jeon WB; Singer SW; Ludden PW; Rubio LM J Biol Inorg Chem; 2005 Dec; 10(8):903-12. PubMed ID: 16283394 [TBL] [Abstract][Full Text] [Related]
10. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum. Ensign SA; Bonam D; Ludden PW Biochemistry; 1989 Jun; 28(12):4968-73. PubMed ID: 2504284 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications. Anderson ME; Lindahl PA Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595 [TBL] [Abstract][Full Text] [Related]
12. Energetics for the Mechanism of Nickel-Containing Carbon Monoxide Dehydrogenase. Liao RZ; Siegbahn PEM Inorg Chem; 2019 Jun; 58(12):7931-7938. PubMed ID: 31141352 [TBL] [Abstract][Full Text] [Related]
13. CO/CO2 potentiometric titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the effect of CO2. Russell WK; Lindahl PA Biochemistry; 1998 Jul; 37(28):10016-26. PubMed ID: 9665707 [TBL] [Abstract][Full Text] [Related]
15. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Drennan CL; Heo J; Sintchak MD; Schreiter E; Ludden PW Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11973-8. PubMed ID: 11593006 [TBL] [Abstract][Full Text] [Related]
16. Carbon monoxide induced decomposition of the active site [Ni-4Fe-5S] cluster of CO dehydrogenase. Dobbek H; Svetlitchnyi V; Liss J; Meyer O J Am Chem Soc; 2004 May; 126(17):5382-7. PubMed ID: 15113209 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates. Seravalli J; Kumar M; Lu WP; Ragsdale SW Biochemistry; 1997 Sep; 36(37):11241-51. PubMed ID: 9287167 [TBL] [Abstract][Full Text] [Related]
18. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. Wang VC; Can M; Pierce E; Ragsdale SW; Armstrong FA J Am Chem Soc; 2013 Feb; 135(6):2198-206. PubMed ID: 23368960 [TBL] [Abstract][Full Text] [Related]
19. Carbon monoxide dehydrogenase reaction mechanism: a likely case of abnormal CO2 insertion to a Ni-H(-) bond. Amara P; Mouesca JM; Volbeda A; Fontecilla-Camps JC Inorg Chem; 2011 Mar; 50(5):1868-78. PubMed ID: 21247090 [TBL] [Abstract][Full Text] [Related]
20. Initial structure modification of tetrahedral to planar nickel(II) in a nickel-iron-sulfur cluster related to the C-cluster of carbon monoxide dehydrogenase. Panda R; Zhang Y; McLauchlan CC; Venkateswara Rao P; Tiago de Oliveira FA; Münck E; Holm RH J Am Chem Soc; 2004 May; 126(20):6448-59. PubMed ID: 15149242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]