These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14769042)

  • 1. Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227.
    Imasheva ES; Balashov SP; Wang JM; Dioumaev AK; Lanyi JK
    Biochemistry; 2004 Feb; 43(6):1648-55. PubMed ID: 14769042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227.
    Imasheva ES; Shimono K; Balashov SP; Wang JM; Zadok U; Sheves M; Kamo N; Lanyi JK
    Biochemistry; 2005 Aug; 44(32):10828-38. PubMed ID: 16086585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1998 Jul; 37(28):9889-93. PubMed ID: 9665693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural changes in the photoactive site of proteorhodopsin during the primary photoreaction.
    Bergo V; Amsden JJ; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 2004 Jul; 43(28):9075-83. PubMed ID: 15248764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical role of Asp227 in the photocycle of proteorhodopsin.
    Herz J; Verhoefen MK; Weber I; Bamann C; Glaubitz C; Wachtveitl J
    Biochemistry; 2012 Jul; 51(28):5589-600. PubMed ID: 22738119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoisomerization in proteorhodopsin mutant D97N.
    Lenz MO; Woerner AC; Glaubitz C; Wachtveitl J
    Photochem Photobiol; 2007; 83(2):226-31. PubMed ID: 16808594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K.
    Maeda A; Tomson FL; Gennis RB; Ebrey TG; Balashov SP
    Biochemistry; 1999 Jul; 38(27):8800-7. PubMed ID: 10393556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-dependent photoisomerization of retinal in proteorhodopsin.
    Huber R; Köhler T; Lenz MO; Bamberg E; Kalmbach R; Engelhard M; Wachtveitl J
    Biochemistry; 2005 Feb; 44(6):1800-6. PubMed ID: 15697205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump.
    Furutani Y; Sumii M; Fan Y; Shi L; Waschuk SA; Brown LS; Kandori H
    Biochemistry; 2006 Dec; 45(51):15349-58. PubMed ID: 17176057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation.
    Hatanaka M; Kashima R; Kandori H; Friedman N; Sheves M; Needleman R; Lanyi JK; Maeda A
    Biochemistry; 1997 May; 36(18):5493-8. PubMed ID: 9154932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic.
    Dioumaev AK; Wang JM; Bálint Z; Váró G; Lanyi JK
    Biochemistry; 2003 Jun; 42(21):6582-7. PubMed ID: 12767242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of bacteriorhodopsin from the apoprotein and retinal studied by Fourier-transform infrared spectroscopy.
    Rüdiger M; Tittor J; Gerwert K; Oesterhelt D
    Biochemistry; 1997 Apr; 36(16):4867-74. PubMed ID: 9125507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K.
    Kawanabe A; Furutani Y; Jung KH; Kandori H
    Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary reaction dynamics of proteorhodopsin mutant D97N observed by femtosecond infrared and visible spectroscopy.
    Verhoefen MK; Neumann K; Weber I; Glaubitz C; Wachtveitl J
    Photochem Photobiol; 2009; 85(2):540-6. PubMed ID: 19192201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.