These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 14769795)

  • 1. Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H.
    Noorwez SM; Malhotra R; McDowell JH; Smith KA; Krebs MP; Kaushal S
    J Biol Chem; 2004 Apr; 279(16):16278-84. PubMed ID: 14769795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inherent instability of the retinitis pigmentosa P23H mutant opsin.
    Chen Y; Jastrzebska B; Cao P; Zhang J; Wang B; Sun W; Yuan Y; Feng Z; Palczewski K
    J Biol Chem; 2014 Mar; 289(13):9288-303. PubMed ID: 24515108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa.
    Noorwez SM; Kuksa V; Imanishi Y; Zhu L; Filipek S; Palczewski K; Kaushal S
    J Biol Chem; 2003 Apr; 278(16):14442-14450. PubMed ID: 12566452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
    Mendes HF; Cheetham ME
    Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations.
    Sakami S; Maeda T; Bereta G; Okano K; Golczak M; Sumaroka A; Roman AJ; Cideciyan AV; Jacobson SG; Palczewski K
    J Biol Chem; 2011 Mar; 286(12):10551-67. PubMed ID: 21224384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis.
    Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K
    Hum Mol Genet; 2014 Apr; 23(7):1723-41. PubMed ID: 24214395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of rapamycin on the fate of P23H opsin associated with retinitis pigmentosa (an American Ophthalmological Society thesis).
    Kaushal S
    Trans Am Ophthalmol Soc; 2006; 104():517-29. PubMed ID: 17471359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opsin stability and folding: the role of Cys185 and abnormal disulfide bond formation in the intradiscal domain.
    McKibbin C; Toye AM; Reeves PJ; Khorana HG; Edwards PC; Villa C; Booth PJ
    J Mol Biol; 2007 Dec; 374(5):1309-18. PubMed ID: 17988684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation.
    Saliba RS; Munro PM; Luthert PJ; Cheetham ME
    J Cell Sci; 2002 Jul; 115(Pt 14):2907-18. PubMed ID: 12082151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Small Molecular Chaperones Binding P23H Mutant Opsin through an In Silico Structure-Based Approach.
    Picarazzi F; Zuanon M; Pasqualetto G; Cammarone S; Romeo I; Young MT; Brancale A; Bassetto M; Mori M
    J Chem Inf Model; 2022 Nov; 62(22):5794-5805. PubMed ID: 36367985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A naturally occurring mutation of the opsin gene (T4R) in dogs affects glycosylation and stability of the G protein-coupled receptor.
    Zhu L; Jang GF; Jastrzebska B; Filipek S; Pearce-Kelling SE; Aguirre GD; Stenkamp RE; Acland GM; Palczewski K
    J Biol Chem; 2004 Dec; 279(51):53828-39. PubMed ID: 15459196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
    Tam BM; Moritz OL
    J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa.
    Chen Y; Brooks MJ; Gieser L; Swaroop A; Palczewski K
    Pharmacol Res; 2017 Jan; 115():1-13. PubMed ID: 27838510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa.
    Wu TH; Ting TD; Okajima TI; Pepperberg DR; Ho YK; Ripps H; Naash MI
    Neuroscience; 1998 Dec; 87(3):709-17. PubMed ID: 9758235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa.
    Olsson JE; Gordon JW; Pawlyk BS; Roof D; Hayes A; Molday RS; Mukai S; Cowley GS; Berson EL; Dryja TP
    Neuron; 1992 Nov; 9(5):815-30. PubMed ID: 1418997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autosomal recessive retinitis pigmentosa and E150K mutation in the opsin gene.
    Zhu L; Imanishi Y; Filipek S; Alekseev A; Jastrzebska B; Sun W; Saperstein DA; Palczewski K
    J Biol Chem; 2006 Aug; 281(31):22289-22298. PubMed ID: 16737970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput screening assays to identify small molecules preventing photoreceptor degeneration caused by the rhodopsin P23H mutation.
    Chen Y; Tang H
    Methods Mol Biol; 2015; 1271():369-90. PubMed ID: 25697536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic compensation restores trafficking of the autosomal recessive retinitis pigmentosa E150K opsin mutant to the plasma membrane.
    Pulagam LP; Palczewski K
    J Biol Chem; 2010 Sep; 285(38):29446-56. PubMed ID: 20628051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.