These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1476993)

  • 1. KEY, LOCK, and LOCKSMITH: complementary hydropathic map predictions of drug structure from a known receptor-receptor structure from known drugs.
    Kellogg GE; Abraham DJ
    J Mol Graph; 1992 Dec; 10(4):212-7, 226. PubMed ID: 1476993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computationally accessible method for estimating free energy changes resulting from site-specific mutations of biomolecules: systematic model building and structural/hydropathic analysis of deoxy and oxy hemoglobins.
    Burnett JC; Botti P; Abraham DJ; Kellogg GE
    Proteins; 2001 Feb; 42(3):355-77. PubMed ID: 11151007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydropathic analysis of the non-covalent interactions between molecular subunits of structurally characterized hemoglobins.
    Abraham DJ; Kellogg GE; Holt JM; Ackers GK
    J Mol Biol; 1997 Oct; 272(4):613-32. PubMed ID: 9325116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor-based pharmacophore tool for design and development of next-generation drugs.
    Udayakumar M; Kumar PS; Hemavathi K; Shanmugapriya P; Seenivasagam R
    Int J Bioinform Res Appl; 2013; 9(5):487-516. PubMed ID: 24001724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular electrostatic potential as a factor of drug-receptor recognition.
    Dukhovich FS; Darkhovskii MB
    J Mol Recognit; 2003; 16(4):191-202. PubMed ID: 12898669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric modifiers of hemoglobin. 2. Crystallographically determined binding sites and hydrophobic binding/interaction analysis of novel hemoglobin oxygen effectors.
    Wireko FC; Kellogg GE; Abraham DJ
    J Med Chem; 1991 Feb; 34(2):758-67. PubMed ID: 1995898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of clefts in receptor structures.
    Lewis RA
    J Comput Aided Mol Des; 1989 Jun; 3(2):133-47. PubMed ID: 2550588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic superposition of drug molecules based on their common receptor site.
    Kato Y; Inoue A; Yamada M; Tomioka N; Itai A
    J Comput Aided Mol Des; 1992 Oct; 6(5):475-86. PubMed ID: 1474395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules.
    Schneidman-Duhovny D; Dror O; Inbar Y; Nussinov R; Wolfson HJ
    J Comput Biol; 2008 Sep; 15(7):737-54. PubMed ID: 18662104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated site-directed drug design: a method for the generation of general three-dimensional molecular graphs.
    Lewis RA
    J Mol Graph; 1992 Sep; 10(3):131-43. PubMed ID: 1467330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of drug-receptor binding kinetics.
    Pan AC; Borhani DW; Dror RO; Shaw DE
    Drug Discov Today; 2013 Jul; 18(13-14):667-73. PubMed ID: 23454741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using active site mapping and receptor-based pharmacophore tools: prelude to docking and de novo/fragment-based ligand design.
    Tripathi A; Surface JA; Kellogg GE
    Methods Mol Biol; 2011; 716():39-54. PubMed ID: 21318899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacophore modelling: a forty year old approach and its modern synergies.
    Caporuscio F; Tafi A
    Curr Med Chem; 2011; 18(17):2543-53. PubMed ID: 21568893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies in the rational drug design.
    Mavromoustakos T; Durdagi S; Koukoulitsa C; Simcic M; Papadopoulos MG; Hodoscek M; Grdadolnik SG
    Curr Med Chem; 2011; 18(17):2517-30. PubMed ID: 21568895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated site-directed drug design: approaches to the formation of 3D molecular graphs.
    Lewis RA
    J Comput Aided Mol Des; 1990 Jun; 4(2):205-10. PubMed ID: 2213065
    [No Abstract]   [Full Text] [Related]  

  • 16. Rational approaches to improving selectivity in drug design.
    Huggins DJ; Sherman W; Tidor B
    J Med Chem; 2012 Feb; 55(4):1424-44. PubMed ID: 22239221
    [No Abstract]   [Full Text] [Related]  

  • 17. Allosteric modifiers of hemoglobin: 2-[4-[[(3,5-disubstituted anilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid derivatives that lower the oxygen affinity of hemoglobin in red cell suspensions, in whole blood, and in vivo in rats.
    Abraham DJ; Wireko FC; Randad RS; Poyart C; Kister J; Bohn B; Liard JF; Kunert MP
    Biochemistry; 1992 Sep; 31(38):9141-9. PubMed ID: 1390701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GAME: a computer graphics method for calculating and displaying the molecular electrostatic potential.
    Hayd H; Bergner A; Preuss H
    J Mol Graph; 1995 Feb; 13(1):2-9, 49. PubMed ID: 7794830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug-Target Interactions.
    Lu S; Zhang J
    J Med Chem; 2019 Jan; 62(1):24-45. PubMed ID: 29457894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ligand efficiency and lead optimization].
    Guo ZR
    Yao Xue Xue Bao; 2013 Dec; 48(12):1755-62. PubMed ID: 24689231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.