These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 14769963)

  • 1. Using nucleases to stimulate homologous recombination.
    Carroll D
    Methods Mol Biol; 2004; 262():195-207. PubMed ID: 14769963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases.
    Carroll D; Beumer KJ; Morton JJ; Bozas A; Trautman JK
    Methods Mol Biol; 2008; 435():63-77. PubMed ID: 18370068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene targeting using zinc finger nucleases.
    Porteus MH; Carroll D
    Nat Biotechnol; 2005 Aug; 23(8):967-73. PubMed ID: 16082368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient endogenous human gene correction using designed zinc-finger nucleases.
    Urnov FD; Miller JC; Lee YL; Beausejour CM; Rock JM; Augustus S; Jamieson AC; Porteus MH; Gregory PD; Holmes MC
    Nature; 2005 Jun; 435(7042):646-51. PubMed ID: 15806097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency homologous recombination in plants mediated by zinc-finger nucleases.
    Wright DA; Townsend JA; Winfrey RJ; Irwin PA; Rajagopal J; Lonosky PM; Hall BD; Jondle MD; Voytas DF
    Plant J; 2005 Nov; 44(4):693-705. PubMed ID: 16262717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining.
    Rebuzzini P; Khoriauli L; Azzalin CM; Magnani E; Mondello C; Giulotto E
    DNA Repair (Amst); 2005 May; 4(5):546-55. PubMed ID: 15811627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and testing of zinc finger nucleases for use in mammalian cells.
    Porteus M
    Methods Mol Biol; 2008; 435():47-61. PubMed ID: 18370067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian gene targeting with designed zinc finger nucleases.
    Porteus MH
    Mol Ther; 2006 Feb; 13(2):438-46. PubMed ID: 16169774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells.
    Tovkach A; Zeevi V; Tzfira T
    Plant J; 2009 Feb; 57(4):747-57. PubMed ID: 18980651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing gene targeting with designed zinc finger nucleases.
    Bibikova M; Beumer K; Trautman JK; Carroll D
    Science; 2003 May; 300(5620):764. PubMed ID: 12730594
    [No Abstract]   [Full Text] [Related]  

  • 11. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation.
    de Pater S; Neuteboom LW; Pinas JE; Hooykaas PJ; van der Zaal BJ
    Plant Biotechnol J; 2009 Oct; 7(8):821-35. PubMed ID: 19754840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric nucleases stimulate gene targeting in human cells.
    Porteus MH; Baltimore D
    Science; 2003 May; 300(5620):763. PubMed ID: 12730593
    [No Abstract]   [Full Text] [Related]  

  • 13. Creating zinc finger nucleases to manipulate the genome in a site-specific manner using a modular-assembly approach.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top93. PubMed ID: 21123434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal aberrations induced by double strand DNA breaks.
    Varga T; Aplan PD
    DNA Repair (Amst); 2005 Aug; 4(9):1038-46. PubMed ID: 15935739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fen-1 facilitates homologous recombination by removing divergent sequences at DNA break ends.
    Kikuchi K; Taniguchi Y; Hatanaka A; Sonoda E; Hochegger H; Adachi N; Matsuzaki Y; Koyama H; van Gent DC; Jasin M; Takeda S
    Mol Cell Biol; 2005 Aug; 25(16):6948-55. PubMed ID: 16055708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks.
    Moore JK; Haber JE
    Nature; 1996 Oct; 383(6601):644-6. PubMed ID: 8857544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting.
    Li J; Baker MD
    J Mol Biol; 2000 Jan; 295(3):505-16. PubMed ID: 10623542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homologous recombination: a basis for targeted genome optimization in crop species such as maize.
    D'Halluin K; Vanderstraeten C; Stals E; Cornelissen M; Ruiter R
    Plant Biotechnol J; 2008 Jan; 6(1):93-102. PubMed ID: 17999657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust cell line development using meganucleases.
    Cabaniols JP; Pâques F
    Methods Mol Biol; 2008; 435():31-45. PubMed ID: 18370066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene targeting in plants: fingers on the move.
    Kumar S; Allen GC; Thompson WF
    Trends Plant Sci; 2006 Apr; 11(4):159-61. PubMed ID: 16530459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.