BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 14769993)

  • 1. Identifying phosphoCTD-associating proteins.
    Phatnani HP; Greenleaf AL
    Methods Mol Biol; 2004; 257():17-28. PubMed ID: 14769993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome.
    Phatnani HP; Jones JC; Greenleaf AL
    Biochemistry; 2004 Dec; 43(50):15702-19. PubMed ID: 15595826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.
    Bartkowiak B; Liu P; Phatnani HP; Fuda NJ; Cooper JJ; Price DH; Adelman K; Lis JT; Greenleaf AL
    Genes Dev; 2010 Oct; 24(20):2303-16. PubMed ID: 20952539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II.
    Carty SM; Goldstrohm AC; Suñé C; Garcia-Blanco MA; Greenleaf AL
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):9015-20. PubMed ID: 10908677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II.
    Lee JM; Greenleaf AL
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3624-8. PubMed ID: 2657724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing.
    Carty SM; Greenleaf AL
    Mol Cell Proteomics; 2002 Aug; 1(8):598-610. PubMed ID: 12376575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis thaliana PRP40s are RNA polymerase II C-terminal domain-associating proteins.
    Kang CH; Feng Y; Vikram M; Jeong IS; Lee JR; Bahk JD; Yun DJ; Lee SY; Koiwa H
    Arch Biochem Biophys; 2009 Apr; 484(1):30-8. PubMed ID: 19467629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation.
    Morris DP; Phatnani HP; Greenleaf AL
    J Biol Chem; 1999 Oct; 274(44):31583-7. PubMed ID: 10531363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation.
    Liu P; Greenleaf AL; Stiller JW
    Mol Biol Evol; 2008 Apr; 25(4):719-27. PubMed ID: 18209193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast.
    Xiao T; Hall H; Kizer KO; Shibata Y; Hall MC; Borchers CH; Strahl BD
    Genes Dev; 2003 Mar; 17(5):654-63. PubMed ID: 12629047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assaying CTD kinases in vitro and phosphorylation-modulated properties of RNA polymerase II in vivo.
    Morris DP; Lee JM; Sterner DE; Brickey WJ; Greenleaf AL
    Methods; 1997 Jul; 12(3):264-75. PubMed ID: 9237170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I.
    Lee JM; Greenleaf AL
    J Biol Chem; 1997 Apr; 272(17):10990-3. PubMed ID: 9110987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural perspective of CTD function.
    Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P
    Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA polymerase II CTD kinase Ctk1 functions in translation elongation.
    Röther S; Strässer K
    Genes Dev; 2007 Jun; 21(11):1409-21. PubMed ID: 17545469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo.
    Lee D; Lis JT
    Nature; 1998 May; 393(6683):389-92. PubMed ID: 9620805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II.
    Winsor TS; Bartkowiak B; Bennett CB; Greenleaf AL
    PLoS One; 2013; 8(4):e60909. PubMed ID: 23613755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription.
    Serizawa H; Conaway JW; Conaway RC
    Nature; 1993 May; 363(6427):371-4. PubMed ID: 8497323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats.
    Peterson SR; Dvir A; Anderson CW; Dynan WS
    Genes Dev; 1992 Mar; 6(3):426-38. PubMed ID: 1547941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation and functions of the RNA polymerase II CTD.
    Phatnani HP; Greenleaf AL
    Genes Dev; 2006 Nov; 20(21):2922-36. PubMed ID: 17079683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.