These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 14770237)

  • 41. Theoretic calculation for understanding the oxidation process of 1,4-dimethoxybenzene-based compounds as redox shuttles for overcharge protection of lithium ion batteries.
    Li T; Xing L; Li W; Peng B; Xu M; Gu F; Hu S
    J Phys Chem A; 2011 May; 115(19):4988-94. PubMed ID: 21517049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks.
    Milczarek G; Inganäs O
    Science; 2012 Mar; 335(6075):1468-71. PubMed ID: 22442478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective Activation of C=C Bond in Sustainable Phenolic Compounds from Lignin via Photooxidation: Experiment and Density Functional Theory Calculations.
    Zielinski Goldberg M; Burke LA; Samokhvalov A
    Photochem Photobiol; 2015 Nov; 91(6):1332-9. PubMed ID: 26268649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemoselective metal-free aerobic alcohol oxidation in lignin.
    Rahimi A; Azarpira A; Kim H; Ralph J; Stahl SS
    J Am Chem Soc; 2013 May; 135(17):6415-8. PubMed ID: 23570328
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of potential reaction mechanisms leading to the formation of coniferyl alcohol α-linkages in lignin: a density functional theory study.
    Watts HD; Mohamed MN; Kubicki JD
    Phys Chem Chem Phys; 2011 Dec; 13(47):20974-85. PubMed ID: 22009017
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bare histidine-serine models: implication and impact of hydrogen bonding on nucleophilicity.
    Leclaire J; Mazari M; Zhang Y; Bonduelle C; Thillaye du Boullay O; Martin-Vaca B; Bourissou D; De Riggi I; Fortrie R; Fotiadu F; Buono G
    Chemistry; 2013 Aug; 19(34):11301-9. PubMed ID: 23832831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic analysis of the phenyl-shift reaction in β-O-4 lignin model compounds: a computational study.
    Beste A; Buchanan AC
    J Org Chem; 2011 Apr; 76(7):2195-203. PubMed ID: 21381723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.
    Jiang X; Lu Q; Hu B; Liu J; Dong C; Yang Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29120350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atmospheric Low-Temperature Plasma-Induced Changes in the Structure of the Lignin Macromolecule: An Experimental and Theoretical Investigation.
    Cao Y; Tang M; Yang P; Chen M; Wang S; Hua H; Chen W; Zhou X
    J Agric Food Chem; 2020 Jan; 68(2):451-460. PubMed ID: 31834791
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photo- and radiation chemical induced degradation of lignin model compounds.
    Lanzalunga ; Bietti M
    J Photochem Photobiol B; 2000 Jul; 56(2-3):85-108. PubMed ID: 11079470
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of hydrogen bonding on hydrogen-atom abstraction reactions of dehydropyridinium cations in the gas phase.
    Adeuya A; Nash JJ; Kenttämaa HI
    J Phys Chem A; 2010 Dec; 114(49):12851-7. PubMed ID: 21080694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Redox-controlled hydrogen bonding: turning a superbase into a strong hydrogen-bond donor.
    Wild U; Neuhäuser C; Wiesner S; Kaifer E; Wadepohl H; Himmel HJ
    Chemistry; 2014 May; 20(20):5914-25. PubMed ID: 24757064
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A biologically relevant Co1+···H bond: possible implications in the protein-induced redox tuning of Co2+/Co1+ reduction.
    Kumar M; Kozlowski PM
    Angew Chem Int Ed Engl; 2011 Sep; 50(37):8702-5. PubMed ID: 21793132
    [No Abstract]   [Full Text] [Related]  

  • 55. Impact of Hydrogen Bonding on the Susceptibility of Peptides to Oxidation.
    Chan B; Moran D; Easton CJ; Radom L
    Chem Asian J; 2017 Jul; 12(13):1485-1489. PubMed ID: 28544486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure and redox properties of one-electron oxidized radicals from adenine and derivatives.
    Dias RM; Vieira AJ
    Redox Rep; 1996 Aug; 2(4):279-83. PubMed ID: 27406279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimizing electron transfer mediators based on arylimidazoles by ring fusion: synthesis, electrochemistry, and computational analysis of 2-aryl-1-methylphenanthro[9,10-d]imidazoles.
    Francke R; Little RD
    J Am Chem Soc; 2014 Jan; 136(1):427-35. PubMed ID: 24328337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Steady-state and time resolved fluorescence analysis on tyrosine-histidine model compounds.
    Voicescu M; Heinrich M; Hellwig P
    J Fluoresc; 2009 Mar; 19(2):257-66. PubMed ID: 18766301
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Understanding the Key Roles of pH Buffer in Accelerating Lignin Degradation by Lignin Peroxidase.
    Fang W; Feng S; Jiang Z; Liang W; Li P; Wang B
    JACS Au; 2023 Feb; 3(2):536-549. PubMed ID: 36873691
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure and Redox Properties of 5-Amino-3-nitro-1H-1,2,4-triazole (ANTA) Adsorbed on a Silica Surface: A DFT M05 Computational Study.
    Sviatenko LK; Gorb L; Hill FC; Leszczynska D; Leszczynski J
    J Phys Chem A; 2015 Jul; 119(29):8139-45. PubMed ID: 26098296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.